Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 787-794     CSTR: 32134.14.1005.4537.2024.106      DOI: 10.11902/1005.4537.2024.106
  研究报告 本期目录 | 过刊浏览 |
RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究
赵菲1, 王东伟1, 郭泉忠2(), 汪川2
1.太原科技大学材料科学与工程学院 太原 030024
2.中国科学院金属研究所 辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站 辽宁省材料环境腐蚀与评价重点实验室 沈阳 110017
Performance of RGO-CNTs Hybrid Material Modified RuO2-IrO2-SnO2/Ti Anode
ZHAO Fei1, WANG Dongwei1, GUO Quanzhong2(), WANG Chuan2
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Liaoning Province, Liaoning Key Laboratory of Material Environmental Corrosion and Evaluation, National Field Scientific Observation and Research Station of Soil and Atmospheric Environmental Material Corrosion in Shenyang, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110017, China
引用本文:

赵菲, 王东伟, 郭泉忠, 汪川. RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 787-794.
Fei ZHAO, Dongwei WANG, Quanzhong GUO, Chuan WANG. Performance of RGO-CNTs Hybrid Material Modified RuO2-IrO2-SnO2/Ti Anode[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 787-794.

全文: PDF(5764 KB)   HTML
摘要: 

探讨了还原氧化石墨烯-碳纳米管(RGO-CNTs)杂化材料掺杂对RuO2-IrO2-SnO2/Ti阳极电化学性能的影响。利用SEM、EDS、XRD和电化学等手段,对不同热分解温度下掺杂RGO-CNTs的RuO2-IrO2-SnO2/Ti阳极的表面形貌、物相组成、电催化活性以及强化电解寿命进行了表征。结果表明,在前驱体中均匀分散的杂化RGO-CNTs,热分解过程中仍以部分单质状态存在,热分解温度越高,RGO-CNTs杂化材料在涂层中的含量越少。掺杂RGO-CNTs可以缓解涂层内因高温产生的热应力,改善阳极表面较大的热裂纹形貌,显著降低裂纹缺陷数量和缩小尺寸。同时,随着热分解温度的提高,RGO-CNTs杂化材料促进了活性RuO2、IrO2晶粒的析出,提高了涂层中Ru、Ir的含量。掺杂RGO-CNTs的阳极强化电解寿命提高了10%~30%,伏安电量提高了18.95%~26.57%。因此,RGO-CNTs杂化材料提升了金属氧化物阳极的抗腐蚀性能和电催化活性,延长了阳极的服役寿命。

关键词 钛阳极碳杂化材料RGOCNTs金属氧化物    
Abstract

By incorporation of reduced graphene oxide-carbon nanotubes (RGO-CNTs) in the oxide mixture RuO2-IrO2-SnO2 to prepare RGO-CNTs doped RuO2-IrO2-SnO2/Ti anode via multiple coating -calcination process. Then the surface morphology, structure, phase composition, and electrocatalytic activity of the anodes prepared at different calcination temperature were characterized by means of SEM, EDS, XRD, and electrochemical techniques, accordingly their electrolysis lifetime enhancement were also assessed. The results demonstrate that uniformly dispersed hybrid RGO-CNTs in the precursors still remain partially as elemental form in the acquired calcinates, with the increasing calcination temperature, the RGO-CNTs amount in the calcinates decreases. The doped RGO-CNTs can alleviate the thermal stress generated within the coating at high temperatures, improving the surface morphology of the anode with fewer and smaller thermal crack defects. Moreover, with the increasing calcination temperature, the doped RGO-CNTs may facilitate the precipitation of active RuO2 and IrO2 grains, enhancing the content of Ru and Ir in the coating, thereby enhance the electrolysis lifetime by 10%-30%, and voltammetric charge by 18.95%-26.57%. Consequently, the doped RGO-CNTs hybrid material can enhance the corrosion resistance and electrocatalytic activity of the metal oxide anode, therefore prolong its service life.

Key wordstitanium anode    carbon hybrid materials    RGO    CNTs    metal oxide
收稿日期: 2024-04-01      32134.14.1005.4537.2024.106
ZTFLH:  TG174.4  
基金资助:国家重点研发计划(2021YFC2803102);沈阳市自然科学基金专项(自由探索类)(23503605)
通讯作者: 郭泉忠,E-mail:qzguo@imr.ac.cn,研究方向为腐蚀科学与防护、电化学制造
Corresponding author: GUO Quanzhong, E-mail: qzguo@imr.ac.cn
作者简介: 赵 菲,女,1982年生,博士,教授
NumberCalcination temperature / ℃Doping
N1430None
H1430Addition of RGO-CNTs
N2450None
H2450Addition of RGO-CNTs
N3470None
H3470Addition of RGO-CNTs
表1  样品编号及工艺条件
图1  不同烧结温度下金属氧化物阳极的表面形貌
图2  明亮析出晶粒的元素分析图
ElementRuIrSnCOTi
N117.9620.2834.891.9612.8312.08
H121.8521.4227.936.7813.588.44
N217.3020.1531.442.1413.1615.81
H220.6321.2623.536.1614.2614.16
N317.6920.2532.522.3213.2214.00
H319.7620.3228.925.6614.1311.21
表2  不同金属氧化物阳极的能谱元素分析表
图3  不同金属氧化物阳极的XRD谱
图4  3.5%NaCl溶液中不同金属氧化物阳极的阻抗谱图
图5  阳极的等效电路图
ElectrodeRs / Ω·cm2Qf / Ω-1·cm-2·s nnRf / Ω·cm2Qdl / Ω-1·cm-2·s nnRct / Ω·cm2
N17.1140.18760.711418.940.002620.701921.43
H17.1940.19980.777213.620.005810.685711.48
N27.0190.15440.213222.380.002080.868013.91
H27.5470.16860.124712.420.004240.79487.35
N37.4370.02570.334142.630.001950.812632.35
H37.1510.13460.16819.230.000970.822727.95
表3  3.5%NaCl溶液中不同金属氧化物阳极的电化学阻抗谱拟合数据
图6  3.5%NaCl溶液中不同金属氧化物阳极的循环伏安曲线
图7  26.5%NaCl溶液中不同金属氧化物阳极的线性扫描伏安曲线
图8  1 mol/L H2SO4溶液中不同金属氧化物阳极的强化电解寿命
[1] Xiang P, Luo H, Yang F, et al. Research status of anti-corrosion system for cathodic protection of marine steel structures [J]. Shandong Chem. Ind., 2023, 52(18): 115
[1] 向 攀, 罗 宏, 杨 飞 等. 海洋钢结构阴极保护的防腐体系研究现状 [J]. 山东化工, 2023, 52(18): 115
[2] Liu J, He Q W, Chen H, et al. Review on marine antifouling coatings [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 483
[2] 刘 姣, 何其伟, 陈 洪 等. 船舶防污涂料的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 483
[3] Hou S Z. Research and application of cathodic protection technology [J]. Total Corros. Control, 2018, 32(10): 39
[3] 侯世忠. 阴极保护技术的研究与应用 [J]. 全面腐蚀控制, 2018, 32(10): 39
[4] Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
[4] 李 科, 翟晓凡, 管 方 等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495
[5] Wang J J, Qin G T, Wei W. Progress of study on durabilities of ti based metal oxide anodes [J]. Corros. Prot., 2012, 33: 144
[5] 王晶晶, 秦国彤, 魏 微. 钛基金属氧化物阳极的耐用性研究进展 [J]. 腐蚀与防护, 2012, 33: 144
[6] Trasatti S. Electrocatalysis: understanding the success of DSA [J]. Electrochim. Acta., 2000, 45: 2377
[7] Li Z X, Wang H N, Zhao W. Current research situation and development trend of the biofouling and antifouling technology on titanium alloy [J]. Titanium Ind. Prog., 2015, 32(6): 1
[7] 李争显, 王浩楠, 赵 文. 钛合金表面海生物污损及防护技术的研究现状和发展趋势 [J]. 钛工业进展, 2015, 32(6): 1
[8] Wei H X, Yang J, Zhang Y F, et al. Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries [J]. J. Colloid Interface Sci., 2018, 524: 256
[9] Li X J, Hui H H, Zhao J W, et al. Effect of MWCNTs content on corrosion resistance of chromium-free zinc-aluminum coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 324
[9] 李旭嘉, 惠红海, 赵君文 等. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 324
[10] Huang X, Yin Z Y, Wu S X, et al. Graphene‐based materials: synthesis, characterization, properties, and applications [J]. Small, 2011, 7: 1876
[11] Mehdipour M, Tabaian S H, Firoozi S. Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2-Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell [J]. Ceram. Int., 2019, 45: 19971
[12] Fan Y Z, Cheng X. Porous IrO2-Ta2O5 coating modified with carbon nanotubes for oxygen evolution reaction [J]. J. Electrochem. Soc., 2016, 163: E209
[13] Royaei N, Shahrabi T, Yaghoubinezhad Y. Corrosion modeling of dimensional stable anode modified by graphene compounds through a response surface methodology [J]. Mater. Res. Express, 2019, 6: 085530
[14] Ma H, Qiu H, Qi S H. Electrically conductive adhesives based on acrylate resin filled with silver-plated graphite nanosheets and carbon nanotubes [J]. J. Adhes. Sci. Technol., 2015, 29: 2233
[15] Chatterjee S, Nafezarefi F, Tai N H, et al. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J]. Carbon, 2012, 50: 5380
[16] Ning H L. Study on properties of titanium-based metal oxide anodes modified with graphene [D]. Jinan: Shandong University, 2015
[16] 宁慧利. 含石墨烯钛基金属氧化物阳极性能改进研究 [D]. 济南: 山东大学, 2015
[17] Wang K, Han Y, Wang J T, et al. The effect of solution concentration on properties of Ru-Ti-Ir oxide anode coatings [J]. J. Electrochem., 2006, 12: 74
[17] 王 科, 韩 严, 王均涛 等. 涂液浓度对Ru-Ti-Ir氧化物阳极涂层性能的影响 [J]. 电化学, 2006, 12: 74
[18] Zhang Z X, Zheng T. Selection of the electrolysis factors in forced life test of Ti-anode with coating [J]. Chlor-Alkali Ind., 2004, (5): 10
[18] 张招贤, 郑 团. 涂层钛阳极强化寿命试验电解因素的选择 [J]. 氯碱工业, 2004, (5): 10
[19] Han Z H, Zhu P X, Guo J X, et al. Effects of microstructures of Ti anode coating with two constituents (RuO2-TiO2) and three constituent (RuO2-SnO2-TiO2) on the electrochemical properties [J]. Acta Mater. Compositae Sin., 2013, 30(6): 121
[19] 韩朝辉, 竺培显, 郭佳鑫 等. 二组元(RuO2-TiO2)及三组元(RuO2-SnO2-TiO2)Ti阳极涂层的微观组织对其电化学性能的影响 [J]. 复合材料学报, 2013, 30(6): 121
[20] Wei J F, Fu H T, Wang T Y, et al. Effect of sintering temperature on properties of graphenecontaining Ti/IrTaSnSb-G metal oxide anodes [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 248
[20] 韦鉴峰, 付洪田, 王廷勇 等. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 248
[21] Kameyama K, Tsukada K, Yahikozawa K, et al. Surface characterization of RuO2-IrO2-TiO2 coated titanium electrodes [J]. J. Electrochem. Soc., 1994, 141: 643
[22] Radjenovic J, Bagastyo A, Rozendal R A, et al. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes [J]. Water Res., 2011, 45: 1579
[23] Wang T Y, Dong R Y, Xu S, et al. Electrochemical properties of graphene modified mixed metal oxide anodes of Ti/IrTaSnSb-G in NaCl solutions at low temperature [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 289
[23] 王廷勇, 董如意, 许 实 等. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能 [J]. 中国腐蚀与防护学报, 2020, 40: 289
[24] Lian F. Study on improving of carbon nanotubes on the performance of Ti-based metal oxide anode [D]. Qingdao: Qingdao University of Science and Technology, 2015
[24] 廉 锋. 碳纳米管改善钛基金属氧化物阳极性能的研究 [D]. 青岛: 青岛科技大学, 2015
[25] Wang Q, Wang R, Xu H B. Preparation and electrocatalytic properties of Ir0.08Ti0.92O2 and Pt/Ir0.08Ti0.92O2 [J]. Chem. J. Chin. Univ., 2014, 35: 1962
[25] 王 强, 王 锐, 徐海波. Ir0.08Ti0.92O2及其载Pt催化剂的制备与电催化性能 [J]. 高等学校化学学报, 2014, 35: 1962
[26] Zeng Q Y. Preparation of graphene-enhanced RuO2-IrO2-SnO2 anode and the investigation of its electrocatalytic properties [D]. Harbin: Harbin Engineering University, 2021
[26] 曾庆杨. 石墨烯增强RuO2-IrO2-SnO2阳极的制备及电催化性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021
[1] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[2] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[3] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[4] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[5] 李辉 . 钢筋混凝土阴极保护用RuMn/Ti阴极的电化学性能[J]. 中国腐蚀与防护学报, 2004, 24(5): 280-283 .