Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 780-786     CSTR: 32134.14.1005.4537.2024.119      DOI: 10.11902/1005.4537.2024.119
  研究报告 本期目录 | 过刊浏览 |
天然气集输倾斜管道腐蚀行为及缓蚀剂分布研究
侯晓犇1, 刘宁2,3, 扈俊颖2()
1.中国石油化工股份有限公司西南油气分公司采气三厂 德阳 610041
2.西南石油大学石油与天然气工程学院 成都 610500
3.国家石油天然气管网集团有限公司湖南分公司 长沙 410016
Corrosion Behavior and Distribution of Corrosion Inhibitors in Inclined Section for Natural Gas Gathering and Transportation Pipelines
HOU Xiaoben1, LIU Ning2,3, HU Junying2()
1.Southwest Oil and Gas Branch of China Petroleum and Chemical Corporation, Deyang 610041, China
2.School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China, 3 PipeChina Hunan Branch, Changsha 410016, China
3.PipeChina Hunan Branch, Changsha 410016, China
引用本文:

侯晓犇, 刘宁, 扈俊颖. 天然气集输倾斜管道腐蚀行为及缓蚀剂分布研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 780-786.
Xiaoben HOU, Ning LIU, Junying HU. Corrosion Behavior and Distribution of Corrosion Inhibitors in Inclined Section for Natural Gas Gathering and Transportation Pipelines[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 780-786.

全文: PDF(4717 KB)   HTML
摘要: 

通过实验+ CFD模拟研究了倾角为30°的天然气集输管道在气液两相流下的腐蚀行为及连续加注型缓蚀剂的分布规律和缓蚀效率。结果表明:当气相流速为3 m/s、携液量为7.5%时在倾角30°的管道中弯管段和倾斜段气液两相流转变为段塞流,使其成为腐蚀的主要区域,与现场集输管道腐蚀刺漏部位吻合。电化学测试与Fluent模拟结果均表明缓蚀剂在管道顶部和底部的浓度分布沿管道轴向均呈现先上升后降低的趋势,管道底部浓度高于相应部位的顶部浓度;管道底部倾斜段的腐蚀速率最大,表明缓蚀剂在倾斜管段处的覆盖度最小。

关键词 倾斜管道气液两相流连续加注型缓蚀剂CFD模拟    
Abstract

The corrosion behavior of a pipeline with an inclination of 30° in gas-liquid two-phase flow, the distribution and the inhibition efficiency of corrosion inhibitors were studied by experiment and CFD simulation. The results indicate that in case of the gas phase flow rate of 3 m/s while carrying 7.5vol.% liquid, the gas-liquid two-phase flow in the bent and inclined sections transforms into slug flow, thereby, where become the main areas subjected to corrosion, which is consistent with the detected locations of pipeline leakage at the gas field site. Results of electrochemical test and the fluent simulation indicate that the concentration distribution of corrosion inhibitors at the top and bottom of the pipeline shows a trend of first increasing and then decreasing along the pipeline axis, the concentration at the bottom of the pipeline is higher than the corresponding concentration at the top of the corresponding part. The corrosion rate of the electrode in the inclined section is the highest, indicating the minimum coverage of the corrosion inhibitor at the inclined section.

Key wordsinclined pipeline    gas-liquid two-phase flow    continuous injection type corrosion inhibitor    CFD simulations
收稿日期: 2024-04-10      32134.14.1005.4537.2024.119
ZTFLH:  TE257  
通讯作者: 扈俊颖,E-mail:hujunying01@yeah.net,研究方向为油气田腐蚀与防护
Corresponding author: Hu Junying, E-mail: hujunying01@yeah.net
作者简介: 侯晓犇,男,1985年生,硕士,高级工程师
图1  30°倾斜管道内气液两相分布云图
图2  30°倾斜管道内压力和速度分布云图
图3  30°倾斜管道内不同横截面处液相流量
图4  管道内不同位置处电极的Nyquist图及等效电路
Electrode positionRs / Ω·cm2Y0 / 10-4 Ω-1·s-n ·cm-2n1Rct / Ω·cm2
Horizontal section43.721.920.93525.0
Bend section26.782.850.90357.0
Inclined section48.333.180.79229.2
表1  30°倾斜角度下不同位置处电极的电化学阻抗拟合数据结果
图5  30°倾斜管道内不同位置处电极的SEM像
图6  缓蚀剂在30°倾斜管道中的浓度分布图
图7  30°倾斜管道内距管道入口不同处截面的缓蚀剂浓度分布图
图8  30°倾斜管道内不同部位处电极的Nyquist图
ElectrodeRs / Ω·cm2CPE1Rf / Ω·cm2CPE2Rct / Ω·cm2
Y0 / 10-4 Ω-1·s-n ·cm-2nY0 / 10-4 Ω-1·s-n ·cm-2n
15.380.1511.033.010.73533.8
25.254.970.644.060.310.94288.6
36.220.64119.013.210.75129.2
42.952.390.432.842.130.81741.1
55.253.440.6134.770.280.901024
65.483.100.7610.360.180.97454.8
75.653.380.803.251.470.86314.4
表2  30°倾斜管道内1~7号电极电化学阻抗谱的拟合结果
图9  3个典型电极表面AFM图像
图10  缓蚀剂在不同入口速度下的浓度分布
[1] Hou B S, Zhang Q H, Li Y Y, et al. A pyrimidine derivative as a high efficiency inhibitor for the corrosion of carbon steel in oilfield produced water under supercritical CO2 conditions [J]. Corros. Sci., 2020, 164: 108334
[2] Zeng D Z, Dong B J, Zeng F, et al. Analysis of corrosion failure and materials selection for CO2-H2S gas well [J]. J. Nat. Gas Sci. Eng., 2021, 86: 103734
[3] Sun H, Blumer D, Swidzinski M, et al. Evaluating corrosion inhibitors for sour gas subsea pipelines [A]. IPTC 2009: International Petroleum Technology Conference [C]. Doha, 2009: cp-151-00060
[4] Si X D. The influence of flow field on single-phase flow-accelerated corrosion at high temperture [D]. Nanjing: Southeast University, 2020
[4] 司晓东. 高温单相流管内流场对流动加速腐蚀影响研究 [D]. 南京: 东南大学, 2020
[5] Wu G Y, Yan J, Lan Q, et al. Corrosion and inhibition of low-velocity pipelines for sour gas field in foreign countries [A]. The 18th National Symposium on Corrosion Inhibitors [C]. Chengdu, 2014: 23
[5] 吴贵阳, 闫 静, 蓝 琼 等. 国外高酸性气田低流速管线腐蚀现状与防腐蚀措施 [A]. 第十八届全国缓蚀剂学术讨论会论文集 [C]. 成都, 2014: 23
[6] Qing S Z, Zhang X L, Wen Z, et al. Research on causes of corrosion perforation in Changning shale gas gathering pipelines [J]. Mater. Prot., 2021, 54(6): 166
[6] 青松铸, 张晓琳, 文 崭 等. 长宁页岩气集气管道内腐蚀穿孔原因探究 [J]. 材料保护, 2021, 54(6): 166
[7] Jiang A G, Zhang J W, Xin Y N, et al. Numerical simulation of multiphase erosion-corrosion of tubes bundles of hydrocracking air cooler [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 192
[7] 姜爱国, 张建文, 辛亚男 等. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟 [J]. 中国腐蚀与防护学报, 2019, 39: 192
doi: 10.11902/1005.4537.2018.003
[8] Huang X S, An S T, Chen C F. Corrosion evaluation on tubular goods for linepipes and optimization of corrosion inhibitor injection in the Puguang gas field [J]. Nat. Gas Ind., 2011, 31(9): 120
[8] 黄学松, 安思彤, 陈长风. 普光气田集输管材腐蚀评价及缓蚀剂加药工艺优化 [J]. 天然气工业, 2011, 31(9): 120
[9] Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
[9] 白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
doi: 10.11902/1005.4537.2020.015
[10] Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
[10] 吕祥鸿, 张 晔, 闫亚丽 等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
doi: 10.11902/1005.4537.2019.220
[11] Chen Y M, Dong M, Wang B, et al. Flow-assisted corrosion simulation of natural gas pipeline flow containing sour dissolved gas [J]. Surf. Technol., 2022, 51(8): 298
[11] 陈一鸣, 董 美, 王 博 等. 含酸性溶解气的气液两相流管道流致腐蚀模拟 [J]. 表面技术, 2022, 51(8): 298
[12] Fu Z X. The corrosion of slug flow with dissolved CO2 on X60 steel [J]. Oil-Gasfield Surf. Eng., 2009, 28(7): 27
[12] 符中欣. 含CO2段塞流对X60钢的腐蚀 [J]. 油气田地面工程, 2009, 28(7): 27
[13] Yang Y, Li J B, Wang S L, et al. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline [J]. J. Environ. Chem. Eng., 2017, 5: 4220
[14] Yang Y, Li J B, Wang S L, et al. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas [J]. Int. J. Pressure Vessels Piping, 2018, 162: 52
[15] Zhang H, Lan H Q, Lin N. A numerical simulation of water distribution associated with internal corrosion induced by water wetting in upward inclined oil pipes [J]. J. Pet. Sci. Eng., 2019, 173: 351
[16] Tang P, Yang J, Zheng J Y, et al. Predicting erosion-corrosion induced by the interactions between multiphase flow and structure in piping system [J]. J. Pressure Vessel Technol., 2009, 131: 061301
[17] Wang Y C, Bierwagen G P. A new acceleration factor for the testing of corrosion protective coatings: flow-induced coating degradation [J]. J. Coat. Technol. Res., 2009, 6: 429
[18] Guan X R, Zhao Y L, Wang J J, et al. Numerical analysis of quasi-steady flow characteristics in large diameter pipes with low liquid loading under high pressure [J]. J. Nat. Gas Sci. Eng., 2015, 26: 907
[19] Liu E B, Tang H, Zhang Y H, et al. Experiment and numerical simulation of distribution law of water-based corrosion inhibitor in natural gas gathering and transportation pipeline [J]. Petrol. Sci., 2023, 20: 1857
[20] Hong T, Sun Y H, Jepson W P. Study on corrosion inhibitor in large pipelines under multiphase flow using EIS [J]. Corros. Sci., 2002, 44: 101
[21] Zeng L, Zhang G A, Guo X P, et al. Inhibition effect of thioureidoimidazoline inhibitor for the flow accelerated corrosion of an elbow [J]. Corros. Sci., 2015, 90: 202
[22] Liao K X, Qin M, He G X, et al. Study on corrosion mechanism and the risk of the shale gas gathering pipelines [J]. Eng. Fail. Anal., 2021, 128: 105622
[23] Ye N, Liao K X, He G X, et al. Research on the corrosion cause analysis and protective measures of shale gas surface gathering pipelines [J]. Mater. Prot., 2021, 54(9) 142
[23] 叶 男, 廖柯熹, 何国玺 等. 页岩气地面集输管道腐蚀原因分析及防护措施研究 [J]. 材料保护, 2021, 54(9) 142
[1] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.