Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 731-738     CSTR: 32134.14.1005.4537.2024.206      DOI: 10.11902/1005.4537.2024.206
  研究报告 本期目录 | 过刊浏览 |
Mg-Gd-Y-Zr合金在模拟沿海贮存环境下的腐蚀行为与机理研究
张超1, 陈俊航2, 邹士文1, 张欢1, 李曌亮1, 肖葵2()
1.航天材料及工艺研究所 北京 100076
2.北京科技大学新材料技术研究院 北京 100083
Corrosion Behavior of Mg-Gd-Y-Zr Alloy in Simulated Coastal Storage Environment
ZHANG Chao1, CHEN Junhang2, ZOU Shiwen1, ZHANG Huan1, LI Zhaoliang1, XIAO Kui2()
1.Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
2.Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张超, 陈俊航, 邹士文, 张欢, 李曌亮, 肖葵. Mg-Gd-Y-Zr合金在模拟沿海贮存环境下的腐蚀行为与机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
Chao ZHANG, Junhang CHEN, Shiwen ZOU, Huan ZHANG, Zhaoliang LI, Kui XIAO. Corrosion Behavior of Mg-Gd-Y-Zr Alloy in Simulated Coastal Storage Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 731-738.

全文: PDF(15748 KB)   HTML
摘要: 

针对航空航天用铸造Mg-Gd-Y-Zr合金,为了评估其在沿海贮存环境下的腐蚀行为演变规律,基于我国南部沿海城市的环境参数设计了模拟临海贮存环境的加速环境谱试验方法。通过腐蚀动力学、扫描电子显微镜、X射线衍射分析和电化学测试等技术研究了铸造Mg-Gd-Y-Zr合金在模拟临海贮存环境中的腐蚀行为。结果表明,Mg-Gd-Y-Zr合金在模拟沿海贮存环境中生成较多的腐蚀产物,锈层电阻Rf不断提高,试样的腐蚀速率呈下降趋势。XRD结果表明,腐蚀产物主要为Mg(OH)2、MgCl2·6H2O、MgO、Gd2O3以及少量的ZrO2。随着试验的进行,试样的腐蚀产物逐渐分为两层,外层较为疏松,内层较为致密。

关键词 铸造镁合金贮存环境腐蚀产物    
Abstract

In order to evaluate the corrosion behavior evolution of aerospace cast Mg-Gd-Y-Zr alloy in coastal storage environments, herein, an accelerated environmental spectrum test method was designed to simulate coastal storage environments based on environmental parameters of several typical southern coastal cities of our country. The corrosion behavior of Mg-Gd-Y-Zr alloy in the simulated coastal storage environment was studied by means of corrosion kinetics, scanning electron microscopy, X-ray diffraction analysis, and electrochemical testing. The results showed that with the progress of corrosion process, corrosion products formed on Mg-Gd-Y-Zr alloy increased gradually, and the resistance Rf of the rust layer continued to increase, while the alloy showed continually a decreasing trend in corrosion rate. The XRD results indicate that the corrosion products are composited mainly of Mg(OH)2, MgCl2·6H2O, MgO, Gd2O3, and a small amount of ZrO2. Correspondingly, the scale of corrosion products on the alloy was gradually divided into two layers, with the outer layer being relatively loose and the inner layer being relatively dense.

Key wordscasting Mg-alloy    storage environment    corrosion product
收稿日期: 2024-07-09      32134.14.1005.4537.2024.206
ZTFLH:  TG172  
通讯作者: 肖 葵,E-mail:xiaokui@ustb.edu.cn,研究方向为金属材料大气腐蚀行为与机理研究、材料服役环境损伤机理和环境腐蚀
Corresponding author: XIAO Kui, E-mail: xiaokui@ustb.edu.cn
作者简介: 张 超,男,1993年生,博士,工程师
图1  模拟沿海贮存环境的加速试验方法
图2  Mg-Gd-Y-Zr合金的微观形貌及物相组成
图3  Mg-Gd-Y-Zr合金在模拟沿海贮存环境实验后的腐蚀失重曲线
图4  Mg-Gd-Y-Zr合金在模拟沿海贮存环境实验不同时间后的表面腐蚀产物形貌
PointCOMgClGd
a10.938.849.80.5-
b7.717.664.2-10.5
c11.442.845.8--
d10.643.446.0--
e10.937.751.4--
f11.441.247.5--
g14.544.728.212.6-
h15.354.130.6--
表1  表面腐蚀产物的EDS能谱 (mass fraction / %)
图5  Mg-Gd-Y-Zr合金在模拟沿海贮存环境实验后的截面锈层形貌
图6  模拟沿海贮存环境实验不同时间后腐蚀产物的XRD谱
图7  Mg-Gd-Y-Zr合金在模拟沿海贮存环境实验后的极化曲线及拟合参数
图8  Mg-Gd-Y-Zr合金在模拟沿海贮存环境实验后的电化学阻抗谱
Test time / hRs / Ω·cm2QRf / Ω·cm2
Y0 / 10-6 Ω-1·cm-2·s nn
28215.935.40.71821551
56825.823.80.71953012
85241.930.40.63514633
113674.723.70.617111280
表2  电化学阻抗谱图的拟合参数
[1] Liu Z S, Li Y D, Zhao J W, et al. Research on aluminum alloy materials and application technology for automobile lightweight [J]. Mater. China, 2022, 41: 786
[1] 刘贞山, 李英东, 赵经纬 等. 汽车轻量化用铝合金材料及应用技术的研究 [J]. 中国材料进展, 2022, 41: 786
[2] Wu G R, Chen X H. Research on material lightweight and shape design of automobile wheel hub [J]. Mater. Rep., 2021, 35: 19181
[2] 吴国荣, 陈旭辉. 汽车轮毂材料轻量化与造型设计研究 [J]. 材料导报, 2021, 35: 19181
[3] Huang Z F, Yong Q W, Fang R, et al. Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 755
[3] 黄志凤, 雍奇文, 房 蕊 等. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层 [J]. 中国腐蚀与防护学报, 2023, 43: 755
doi: 10.11902/1005.4537.2023.143
[4] Wang H, Liu Y Y. Research progress in the preparation of anti-corrosion superhydrophobic coatings on magnesium alloys [J]. Surf. Technol., 2023, 52(11): 1
[4] 王 华, 刘艳艳. 镁合金表面防腐蚀超疏水涂层制备研究进展 [J]. 表面技术, 2023, 52(11): 1
[5] Zhang Y, Liu W, Liu Y, et al. Research progress on microstructure and mechanical properties of medical rare-earth magnesium alloys [J]. Rare Met. Mater. Eng., 2023, 52: 3065
[6] Gu D D, Han B J, Xu Z. Effect of rare earth La on microstructure and corrosion resistance of AZ91D magnesium alloy [J]. Corros. Prot., 2016, 37: 313
[6] 古东懂, 韩宝军, 徐 洲. 稀土镧对AZ91D镁合金组织及耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 313
[7] Deng B, Li Q F, Wu Y Z, et al. Effect of the second phase on the corrosion behavior of Mg-Zn-Zr alloy [J]. Mater. Prot., 2021, 54(9): 48
[7] 邓 彬, 李庆芬, 吴远志 等. 第二相对Mg-Zn-Zr合金腐蚀行为的影响 [J]. 材料保护, 2021, 54(9): 48
[8] Liu X F, Du W B, Fu J J, et al. Effect of Gd on microstructure and corrosion behavior of Mg-xGd-1Er-1Zn-0.6Zr alloys [J]. J. Mater. Eng., 2022, 50(9): 159
[8] 刘雄飞, 杜文博, 付军健 等. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响 [J]. 材料工程, 2022, 50(9): 159
doi: 10.11868/j.issn.1001-4381.2020.001140
[9] Cao F Y, Zhang J, Li K K, et al. Influence of heat treatment on corrosion behavior of hot rolled Mg5Gd alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 939
[10] Cui Z Y, Xiao K, Dong C F, et al. Long-term corrosion behavior of AZ31 magnesium alloy in Xisha marine atmosphere [J]. Chin. J. Eng., 2014, 36: 339
[10] 崔中雨, 肖 葵, 董超芳 等. 西沙严酷海洋大气环境下AZ31镁合金的长周期腐蚀行为 [J]. 北京科技大学学报, 2014, 36: 339
[11] Sun S, Dai J M, Song Y W, et al. Corrosion behavior of extruded EW75 Mg-alloy in Shenyang industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 141
[11] 孙 硕, 代珈铭, 宋影伟 等. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 141
[12] Zhou J, Xue W, Zhou K N. Research on the impact of storage environment on missile reliability [J]. China Plant Eng., 2024, (2): 221
[12] 周 军, 薛 伟, 周康宁. 贮存环境对导弹可靠性影响研究 [J]. 中国设备工程, 2024, (2): 221
[13] Yang Q X, Xuan Z L, Li T P, et al. Analysis for carrier-based aerial ammunition storage environment [J]. J. Ordnance Equip. Eng., 2021, 42(10): 137
[13] 杨清熙, 宣兆龙, 李天鹏 等. 舰载航空弹药贮存环境分析 [J]. 兵器装备工程学报, 2021, 42(10): 137
[14] Tang Y, Meng Q L, Ren P. Spatial distribution and concentrations of salt fogs in a coastal urban environment: a case study in Zhuhai city [J]. Build. Environ., 2023, 234: 110156
[15] Li J S, Chen J H, Song J L, et al. Research on corrosion behavior of truck body steel in chlorine-containing sulfuric acid environment [J]. J. Mater. Res. Technol., 2022, 21: 1878
[16] Song Y W, Shan D Y, Han E H. Pitting corrosion of a rare earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
doi: 10.1016/j.jmst.2017.01.014
[17] Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
[18] Liu M, Schmutz P, Uggowitzer P J, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys [J]. Corros. Sci., 2010, 52: 3687
[19] Liu J N, Bian D, Zheng Y F, et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems [J]. Acta Biomater., 2020, 102: 508
doi: S1742-7061(19)30753-6 pmid: 31722254
[1] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[2] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[3] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[4] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[5] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[6] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[7] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[8] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[9] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[10] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[11] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[12] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[13] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[14] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[15] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.