Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1649-1655     CSTR: 32134.14.1005.4537.2023.397      DOI: 10.11902/1005.4537.2023.397
  研究报告 本期目录 | 过刊浏览 |
304430不锈钢铸坯氧化皮结构及结合力研究
孙琼琼1, 贾玺泉1, 徐震霖1(), 何宜柱1, 范光伟2, 张威2, 李欢1
1.安徽工业大学材料科学与工程学院 马鞍山 243032
2.太原钢铁(集团)有限公司 先进不锈钢材料国家重点实验室 太原 030003
Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels
SUN Qiongqiong1, JIA Xiquan1, XU Zhenlin1(), HE Yizhu1, FAN Guangwei2, ZHANG Wei2, LI Huan1
1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2. State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
引用本文:

孙琼琼, 贾玺泉, 徐震霖, 何宜柱, 范光伟, 张威, 李欢. 304430不锈钢铸坯氧化皮结构及结合力研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
Qiongqiong SUN, Xiquan JIA, Zhenlin XU, Yizhu HE, Guangwei FAN, Wei ZHANG, Huan LI. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1649-1655.

全文: PDF(13164 KB)   HTML
摘要: 

利用场发射扫描电镜、能谱仪和X射线衍射仪,分析了304奥氏体和430铁素体不锈钢铸坯在1240℃空气中保温4 h后的氧化皮结构和成分组成,并利用3D微米划痕仪表征了氧化皮与基体的结合力,探讨材料在实际工况下的氧化机理。结果表明:两种不锈钢的氧化动力学遵循抛物线规律,且430不锈钢的氧化速率显著高于304不锈钢。两种不锈钢的氧化皮均为典型的3层结构:外氧化层、内氧化层和内部氧化层;但两种不锈钢的内氧化层和内部氧化层的形态存在差异。304不锈钢内氧化层较为致密,而430不锈钢内氧化层存在较多孔洞和裂缝,有利于氧的扩散,从而加速氧化进程。304不锈钢的内部氧化层主要呈分散的块状分布,而430不锈钢内部氧化层呈连续根状分布,增强了氧化皮与基体的结合力。

关键词 不锈钢铸坯氧化皮结构结合力    
Abstract

The structure and composition of oxide scales formed on casting billets of 304 austenitic and 430 ferritic stainless steel after being held in air at 1240oC for 4 h were characterized by means of field emission scanning electron microscope, energy dispersive spectroscopy and X-ray diffractometer. The adhesive strength between the oxide scale and the matrix was assessed via 3D micrometer scratch. The oxidation mechanism of the steels in actual working condition was discussed. The results show that the oxidation kinetics of the two stainless steels follow a parabolic low, and the oxidation rate of 430 stainless steel is significantly higher than that of 304 stainless steels. The oxidation products of the two stainless steels have a typical three-layered structure: i.e. the oxide scale composed of an outer layer and an inner layer, as well as an internal oxidation layer beneath the outer oxide scale. But the morphologies of the inner layer of oxide scale and internal oxidation layer for the two stainless steels are different. The inner layer of oxide scale of 304 stainless steel is relatively dense, while there exist obvious pores and cracks in the inner layer of oxide scale of 430 stainless steel, which is conducive to the inward diffusion of oxygen, so that accelerates the oxidation process. The internal oxidation layer of 304 stainless steel is mainly distributed as scattered blocks; while that of 430 stainless steel is distributed as continuous root-like shape, which enhances the adhesion between the oxide scale and the matrix.

Key wordsstainless steel    billet    oxide scale    structure    adhesion
收稿日期: 2023-12-28      32134.14.1005.4537.2023.397
ZTFLH:  TG142.1  
基金资助:山西省科技重大专项(20181101016);国家级大学生创新创业训练计划(202010360020)
通讯作者: 徐震霖,E-mail:xzl2015@ahut.edu.cn,研究方向为先进钢铁材料及金属增材制造等
Corresponding author: XU Zhenlin, E-mail: xzl2015@ahut.edu.cn
作者简介: 孙琼琼,男,1994年生,硕士生
MaterialCSiMnNiCrCuVFe
304 stainless steel0.110.4241.178.4218.130.0330.103Bal.
430 stainless steel0.080.4680.4100.15516.430.0070.092Bal.
表1  304和430不锈钢铸坯的化学成分 (mass fraction / %)
图1  实验装置示意图
图2  304和430不锈钢在1240℃空气中氧化4 h后的氧化动力学曲线
图3  304和430不锈钢在1240℃空气中氧化4 h形成的氧化皮的XRD谱
图4  304和430不锈钢在1240℃空气中氧化4 h后的表面形貌
MaterialPositionFeO
304 stainless steel143.2856.72
265.9834.02
430 stainless steel339.4360.57
464.0735.93
表2  304和430不锈钢在1240℃下形成的氧化皮不同位置处组成元素EDS分析结果 (atomic fraction / %)
图5  304和430不锈钢在1240℃空气中氧化4 h后的横截面形貌和横截面的EDS线扫描
图6  经1240℃空气中4 h氧化的304和430不锈钢划痕实验中摩擦力和划痕深度随加载力的变化曲线
图7  经1240℃空气中4 h氧化的304和430不锈钢划痕试验后表面形貌
1 Cheng X W, Jiang Z Y, Wei D B, et al. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere [J]. Surf. Coat. Technol., 2014, 258: 257
2 Yuan J T, Wang W, Zhang H H, et al. Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam [J]. Corros. Sci., 2016, 109: 36
3 Zhou X L, Zhu M, Hua X Z, et al. Effects of oxide scale on corrosion performance of SS400 hot rolled strip [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 109
3 (周贤良, 朱 敏, 华小珍 等. 氧化皮对SS400热轧带钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 109)
4 Wei L L, Chen L Q, Ma M Y, et al. Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5vol.% water vapor [J]. Mater. Chem. Phys., 2018, 205: 508
5 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
5 (刘 晓, 王 海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529)
6 Wu Q L, Liu Y, Zhang Z H, et al. Oxidation behavior and high-temperature tensile properties of Fe-9Cr-(Mo, Mo/Ni) alloys [J]. Corros. Sci., 2021, 181: 109243
7 Chen G, Zhan C, Ueda M, et al. Effect of water vapor on morphology of oxide scales of Fe-Cr-Ni alloy at 800oC [J]. Heat Treat. Met., 2012, 37: 25
7 (陈 刚, 张 弛, 上田光敏 等. 水蒸气对Fe-Cr-Ni合金在800℃时的氧化膜形貌的影响 [J]. 金属热处理, 2012, 37(10): 25)
8 Mamede A S, Nuns N, Cristol A L, et al. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres [J]. Appl. Surf. Sci., 2016, 369: 510
9 Karimi N, Riffard F, Rabaste F, et al. Characterization of the oxides formed at 1000 °C on the AISI 304 stainless steel by X-ray diffraction and infrared spectroscopy [J]. Appl. Surf. Sci., 2008, 254: 2292
10 Col A, Parry V, Pascal C. Oxidation of a Fe-18Cr-8Ni austenitic stainless steel at 850oC in O2: Microstructure evolution during breakaway oxidation [J]. Corros. Sci., 2017, 114: 17
11 Cheng X W, Jiang Z Y, Wei D B, et al. High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air [J]. Met. Mater. Int., 2015, 21: 251
12 Chandra-Ambhorn S, Phadungwong T, Sirivedin K. Effects of carbon and coiling temperature on the adhesion of thermal oxide scales to hot-rolled carbon steels [J]. Corros. Sci., 2017, 115: 30
13 Hu P, Yu Y H, Zhang X, et al. High temperature oxidation resistance of annealed 430 stainless steel after hot rolling [J]. Heat Treat. Met., 2016, 41(4): 74
13 (胡 潘, 于迎豪, 张栩煜 等. 热轧退火态430不锈钢的高温抗氧化性能 [J]. 金属热处理, 2016, 41(4): 74)
14 Xu Y L, Zhang X, Fan L J, et al. Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 0.08-2.45wt.% Al at 1000oC in air [J]. Corros. Sci., 2015, 100: 311
15 Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 1
15 (尹开锯, 邱绍宇, 唐 睿 等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 中国腐蚀与防护学报, 2010, 30: 1)
16 Li Y H, Wang S Z, Sun P P, et al. Investigation on early formation and evolution of oxide scales on ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2018, 135: 136
17 Zheng Z B, Wang S, Long J, et al. Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel [J]. Corros. Sci., 2020, 164: 108359
18 Shen Z, Chen K, Yu H B, et al. New insights into the oxidation mechanisms of a Ferritic-Martensitic steel in high-temperature steam [J]. Acta Mater., 2020, 194: 522
19 Martinelli L, Desgranges C, Rouillard F, et al. Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550oC: Detailed analysis of the inner oxide layer [J]. Corros. Sci., 2015, 100: 253
20 Demizieux M C, Desgranges C, Martinelli L, et al. Morphology and buckling of the oxide scale after Fe-9Cr Steel Oxidation in Water Vapor Environment [J]. Oxid. Met., 2019, 91: 191
21 Gheno T, Monceau D, Young D J. Mechanism of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide [J]. Corros. Sci., 2012, 64: 222
22 Suárez L, Houbaert Y, Eynde X V, et al. High temperature deformation of oxide scale [J]. Corros. Sci., 2009, 51: 309
[1] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[2] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[3] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[4] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[5] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[6] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[7] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[8] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[9] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[10] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[11] 和雅洁, 陈灵芝, 阮章顺, 付晓刚, 纪琤, 龙斌. 小冲杆技术及其在材料与铅铋脆化效应研究中的应用[J]. 中国腐蚀与防护学报, 2024, 44(3): 567-575.
[12] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[13] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[14] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[15] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.