Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 6-12     CSTR: 32134.14.1005.4537.2022.049      DOI: 10.11902/1005.4537.2022.049
  综合评述 本期目录 | 过刊浏览 |
固体氧化物燃料电池金属连接体腐蚀研究进展
王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强()
华北电力大学能源动力与机械工程学院 北京 102206
Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells
WANG Bihui, XIAO Bo, PAN Peiyuan, LIU Ju, ZHANG Naiqiang()
North China Electric Power University, College of Energy Power and Mechanical Engineering, Beijing 102206, China
全文: PDF(1831 KB)   HTML
摘要: 

固体氧化物燃料电池 (SOFC) 常用廉价、易加工、导电性强的铁素体不锈钢作为连接体材料。然而,SOFC电堆中苛刻环境限制连接体的使用。本文介绍了近年来连接体材料腐蚀行为的研究现状,综述了空气、燃料气氛、双重气氛、微量合金元素、接触环境等因素对连接体腐蚀的影响规律,系统地阐述了连接体材料的腐蚀机理,并指出连接体腐蚀行为研究中存在的不足以及未来发展方向。

关键词 固体氧化物燃料电池高温腐蚀连接体铁素体不锈钢    
Abstract

Ferritic stainless steels are used in solid oxide fuel cell (SOFC) as interconnect materials, which present low cost and good workability, and high electroconductivity. However, the harsh environment limits their use in SOFC stack. This paper introduces the current research status of corrosion of metallic interconnectors, summarizing researches on the influence of the air, fuel, dual atmosphere, alloying elements, and internal contact environment. The corrosion mechanism of interconnect material and the shortcomings of the research on the corrosion behavior of interconnectors, as well as the direction of future development were systematically described.

Key wordssolid oxide fuel cell    high-temperature corrosion    interconnect    ferritic stainless steel
收稿日期: 2022-02-28      32134.14.1005.4537.2022.049
ZTFLH:  TG172  
作者简介: 王碧辉,女,1994年生,博士生

引用本文:

王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
Bihui WANG, Bo XIAO, Peiyuan PAN, Ju LIU, Naiqiang ZHANG. Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 6-12.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.049      或      https://www.jcscp.org/CN/Y2023/V43/I1/6

图1  在850 ℃ Cr氧化物和Mn-Cr氧化物氧化皮厚度随氧化时间的变化及氧化皮厚度预测模型[9]
图2  AISI441合金在800 ℃环境下氧化80 h表面形貌图[29]
图3  Crofer22APU在800 ℃恒温氧化300 h表面形貌[32-35]
图4  SOFC阳极环境下Ni网与铁素体不锈钢连接体间相互作用示意图[23]
1 Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
doi: 10.1016/j.corsci.2020.108739
2 Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
3 Vayyala A, Povstugar I, Naumenko D, et al. A nanoscale study of thermally grown chromia on high-Cr ferritic steels and associated oxidation mechanisms [J]. J. Electrochem. Soc., 2020, 167: 061502
4 Wongpromrat W, Berthomé G, Parry V, et al. Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation [J]. Corros. Sci., 2016, 106: 172
doi: 10.1016/j.corsci.2016.02.002
5 Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
6 Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 ℃ for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
doi: 10.1016/j.jpowsour.2015.10.001
7 Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
8 Hammer J E, Laney S J, Jackson R W, et al. The oxidation of ferritic stainless steels in simulated solid-oxide fuel-cell atmospheres [J]. Oxid. Met., 2007, 67: 1
doi: 10.1007/s11085-006-9041-y
9 Park M, Shin J S, Lee S, et al. Thermal degradation mechanism of ferritic alloy (Crofer 22 APU) [J]. Corros. Sci., 2018, 134: 17
doi: 10.1016/j.corsci.2018.01.022
10 Huczkowski P, Christiansen N, Shemet V, et al. Growth mechanisms and electrical conductivity of oxide scales on ferritic steels proposed as interconnect materials for SOFC's [J]. Fuel Cells, 2006, 6: 93
doi: 10.1002/fuce.200500110
11 Huczkowski P, Christiansen N, Shemet V, et al. Oxidation induced lifetime limits of chromia forming ferritic interconnector steels [J]. J. Fuel. Cell. Sci. Technol., 2004, 1: 30
doi: 10.1115/1.1782925
12 Niewolak L, Young D J, Hattendorf H, et al. Mechanisms of oxide scale formation on ferritic interconnect steel in simulated low and high pO2 service environments of solid oxide fuel cells [J]. Oxid. Met., 2014, 82: 123
doi: 10.1007/s11085-014-9481-8
13 Quadakkers W J, Piron-Abellan J, Shemet V, et al. Metallic interconnectors for solid oxide fuel cells-a review [J]. Mater. High Temp., 2003, 20: 115
14 Chiu Y T, Lin C K. Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect [J]. J. Power Sources, 2012, 198: 149
doi: 10.1016/j.jpowsour.2011.09.056
15 Froitzheim J, Meier G H, Niewolak L, et al. Development of high strength ferritic steel for interconnect application in SOFCs [J]. J. Power Sources, 2008, 178: 163
doi: 10.1016/j.jpowsour.2007.12.028
16 Seo H S, Jin G X, Jun J H, et al. Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect [J]. J. Power Sources, 2008, 178: 1
doi: 10.1016/j.jpowsour.2007.12.026
17 Jin G X, Pan F H, Lang C, et al. Elevated temperature electrical conductivity of STS 444/Y alloy used for SOFC interconnects [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 367
17 金光熙, 潘凤红, 郎成 等. SOFC连接体用STS444/Y合金的高温导电性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 367
18 Alnegren P, Sattari M, Froitzheim J, et al. Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures [J]. Corros. Sci., 2016, 110: 200
doi: 10.1016/j.corsci.2016.04.030
19 Miao Z Y, Chen L, Zhang W Y, et al. Formation and thermal stress analysis of oxide of interconnects alloy in SOFC reduction atmosphere [J]. Rare Met. Mater. Eng., 2021, 50: 2069
19 缪钟毅, 陈霖, 张文颖 等. 连接体合金在SOFC还原气氛下氧化膜的形成及热应力分析 [J]. 稀有金属材料与工程, 2021, 50: 2069
20 Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
doi: 10.1016/j.corsci.2020.109112
21 Quadakkers W J, Hänsel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments [J]. Mater. Corros., 1998, 49: 252
doi: 10.1002/(SICI)1521-4176(199804)49:4<252::AID-MACO252>3.0.CO;2-H
22 Jian L, Huezo J, Ivey D G. Carburisation of interconnect materials in solid oxide fuel cells [J]. J. Power Sources, 2003, 123: 151
doi: 10.1016/S0378-7753(03)00535-4
23 Niewolak L, Wessel E, Hüttel T, et al. Behavior of interconnect steels in carbon containing simulated anode gas of solid oxide fuel cells [J]. J. Electrochem. Soc., 2012, 159: F725
doi: 10.1149/2.033211jes
24 Zeng Z. Corrosion of metallic interconnects for SOFC in fuel gases [J]. Solid State Ionics, 2004, 167: 9
doi: 10.1016/j.ssi.2003.11.026
25 Grabke H J. Carburization, carbide formation, metal dusting, coking [J]. Mater. Tehnol., 2002, 36: 297
26 Horita T, Kshimoto H, Yamaji K, et al. Anomalous oxidation of ferritic interconnects in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2008, 33: 3962
doi: 10.1016/j.ijhydene.2007.07.058
27 Horita T, Kishimoto H, Yamaji K, et al. Oxide Scale Formation and Stability of Fe-Cr Alloy Interconnects under Dual Atmospheres and Current Flow Conditions for SOFCs [J]. J. Electrochem. Soc., 2006, 153: A2007
doi: 10.1149/1.2335944
28 Promdirek P, Lothongkum G, Wouters Y, et al. Effect of humidity on the corrosion kinetics of ferritic stainless steels subjected to synthetic biogas [J]. Mater. Sci. Forum, 2011, 696: 417
doi: 10.4028/www.scientific.net/MSF.696.417
29 Promdirek P, Lothongkhum G, Chandra-Ambhorn S, et al. Behaviour of ferritic stainless steels subjected to dry biogas atmospheres at high temperatures [J]. Mater. Corros., 2010, 62: 616
30 Liu K J, Luo J H, Johnson C, et al. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment [J]. J. Power Sources, 2008, 183: 247
doi: 10.1016/j.jpowsour.2008.04.025
31 Chou Y S, Stevenson J W, Singh P. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect [J]. J. Power Sources, 2008, 184: 238
doi: 10.1016/j.jpowsour.2008.06.020
32 Yang Z, Xia G, Walker M, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrogen Energy, 2007, 32: 3770
doi: 10.1016/j.ijhydene.2006.08.056
33 Yang Z G, Xia G G, Singh P, et al. Effects of water vapor on oxidation behavior of ferritic stainless steels under solid oxide fuel cell interconnect exposure conditions [J]. Solid State Ionics, 2005, 176: 1495
doi: 10.1016/j.ssi.2005.03.019
34 Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
doi: 10.1149/1.1603012
35 Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
doi: 10.1149/1.1810393
36 Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrogen Energy, 2018, 43: 14665
doi: 10.1016/j.ijhydene.2018.05.165
37 Skilbred A W B, Haugsrud R. The effect of water vapour on the corrosion of sandvik sanergy HT under dual atmosphere conditions [J]. Oxid. Met., 2013, 79: 639
doi: 10.1007/s11085-012-9313-7
38 Galerie A, Petit J P, Wouters Y, et al. Water vapour effects on the oxidation of chromia-forming alloys [J]. Mater. Sci. Forum, 2011, 696: 200
doi: 10.4028/www.scientific.net/MSF.696.200
39 Hultquist G, Tveten B, Hörnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence [J]. Oxid. Met., 2000, 54: 1
doi: 10.1023/A:1004610626903
40 Park E, Hüning B, Spiegel M. Evolution of near-surface concentration profiles of Cr during annealing of Fe-15Cr polycrystalline alloy [J]. Appl. Surf. Sci., 2005, 249: 127
doi: 10.1016/j.apsusc.2004.11.078
41 Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
doi: 10.1007/s11085-007-9090-x
42 Holcomb G R, Ziomek-Moroz M, Cramer S D, et al. Dual-environment effects on the oxidation of metallic interconnects [J]. J. Mater. Eng. Perform., 2006, 15: 404
doi: 10.1361/105994906X117198
43 Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800  ℃ [J]. J. Power Sources, 2018, 392: 129
doi: 10.1016/j.jpowsour.2018.04.088
44 Zhou J W, Chen Q F, Sang J K, et al. Conductivity and oxidation behavior of Fe-16Cr alloy as solid oxide fuel cell interconnect under long-stability and thermal cycles [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 668
doi: 10.1007/s40195-020-01147-4
45 Kurokawa H, Oyama Y, Kawamura K, et al. Hydrogen permeation through Fe-16Cr alloy interconnect in atmosphere simulating SOFC at 1073 K [J]. J. Electrochem. Soc., 2004, 151: A1264
doi: 10.1149/1.1767349
46 Young D J, Zurek J, Singheiser L, et al. Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar-H2-H2O [J]. Corros. Sci., 2011, 53: 2131
doi: 10.1016/j.corsci.2011.02.031
47 Babelot C, Fang Q, Blum L, et al. Investigation of Ni-coated-steel-meshes as alternative anode contact material to nickel in an SOFC stack [J]. Int. J. Hydrogen Energy, 2019, 44: 8493
doi: 10.1016/j.ijhydene.2019.01.282
48 Garcia-Fresnillo L, Shemet V, Chyrkin A, et al. Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800 ℃ [J]. J. Power Sources, 2014, 271: 213
doi: 10.1016/j.jpowsour.2014.07.189
49 Li J, Zhang W Y, Yang J J, et al. Oxidation behavior of metallic interconnect in solid oxide fuel cell stack [J]. J. Power Sources, 2017, 353: 195
doi: 10.1016/j.jpowsour.2017.03.092
50 Li Y H, Jiang Y L, Wu J W, et al. Effect of electrical current on solid oxide fuel cells metallic interconnect oxidation in syngas [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 41
doi: 10.1111/j.1744-7402.2009.02430.x
51 Li Y H, Jiang Y L, Wu J W, et al. Corrosion behavior of ebrite and SS430 in coal syngas with loaded current [J]. Int. J. Appl. Ceram. Technol., 2011, 8: 60
doi: 10.1111/j.1744-7402.2010.02553.x
52 Si X Q, Cao J, Ritucci I, et al. Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization [J]. Int. J. Hydrogen Energy, 2019, 44: 3063
doi: 10.1016/j.ijhydene.2018.11.071
53 Kobsiriphat W, Barnett S. Ag-Cu-Ti braze materials for sealing SOFCs [J]. J. Fuel. Cell. Sci. Technol., 2008, 5: 011002
54 Haanappel V A C, Shemet V, Gross S M, et al. Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions [J]. J. Power Sources, 2005, 150: 86
doi: 10.1016/j.jpowsour.2005.02.015
55 Batfalsky P, Haanappel V A C, Malzbender J, et al. Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks [J]. J. Power Sources, 2006, 155: 128
doi: 10.1016/j.jpowsour.2005.05.046
56 Sakai N, Horita T, Yamaji K, et al. Material transport and degradation behavior of SOFC interconnects [J]. Solid State Ionics, 2006, 177: 1933
doi: 10.1016/j.ssi.2006.04.044
57 Jackson R W, Pettit F S, Meier G H. The behavior of nickel and silver in a simulated solid oxide fuel cell environment [J]. J. Power Sources, 2008, 185: 1030
doi: 10.1016/j.jpowsour.2008.08.056
[1] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[2] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[3] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[4] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[5] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[6] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[7] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[8] 梁书源, 姜翠玉. 电厂燃油锅炉腐蚀机理及防腐添加剂研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[9] 马双忱, 焦坤灵, 张立男, 孙尧, 吴文龙, 张小霓. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[10] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[11] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[12] 黄本生, 尹文锋, 王小红, 施宜君. 常减压装置常用钢材在高温原油馏分中的腐蚀研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[13] 张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[14] 张勇,覃作祥,许鸿吉,常凯,陆兴,佟维. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[15] 潘太军,陈德贵,张轲,胡静. NF616和12CrMoV在模拟垃圾气化环境中的高温腐蚀[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.