|
|
固体氧化物燃料电池金属连接体腐蚀研究进展 |
王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强( ) |
华北电力大学能源动力与机械工程学院 北京 102206 |
|
Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells |
WANG Bihui, XIAO Bo, PAN Peiyuan, LIU Ju, ZHANG Naiqiang( ) |
North China Electric Power University, College of Energy Power and Mechanical Engineering, Beijing 102206, China |
引用本文:
王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
Bihui WANG,
Bo XIAO,
Peiyuan PAN,
Ju LIU,
Naiqiang ZHANG.
Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 6-12.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.049
或
https://www.jcscp.org/CN/Y2023/V43/I1/6
|
1 |
Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
doi: 10.1016/j.corsci.2020.108739
|
2 |
Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
|
3 |
Vayyala A, Povstugar I, Naumenko D, et al. A nanoscale study of thermally grown chromia on high-Cr ferritic steels and associated oxidation mechanisms [J]. J. Electrochem. Soc., 2020, 167: 061502
|
4 |
Wongpromrat W, Berthomé G, Parry V, et al. Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation [J]. Corros. Sci., 2016, 106: 172
doi: 10.1016/j.corsci.2016.02.002
|
5 |
Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
|
6 |
Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 ℃ for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
doi: 10.1016/j.jpowsour.2015.10.001
|
7 |
Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
|
8 |
Hammer J E, Laney S J, Jackson R W, et al. The oxidation of ferritic stainless steels in simulated solid-oxide fuel-cell atmospheres [J]. Oxid. Met., 2007, 67: 1
doi: 10.1007/s11085-006-9041-y
|
9 |
Park M, Shin J S, Lee S, et al. Thermal degradation mechanism of ferritic alloy (Crofer 22 APU) [J]. Corros. Sci., 2018, 134: 17
doi: 10.1016/j.corsci.2018.01.022
|
10 |
Huczkowski P, Christiansen N, Shemet V, et al. Growth mechanisms and electrical conductivity of oxide scales on ferritic steels proposed as interconnect materials for SOFC's [J]. Fuel Cells, 2006, 6: 93
doi: 10.1002/fuce.200500110
|
11 |
Huczkowski P, Christiansen N, Shemet V, et al. Oxidation induced lifetime limits of chromia forming ferritic interconnector steels [J]. J. Fuel. Cell. Sci. Technol., 2004, 1: 30
doi: 10.1115/1.1782925
|
12 |
Niewolak L, Young D J, Hattendorf H, et al. Mechanisms of oxide scale formation on ferritic interconnect steel in simulated low and high pO2 service environments of solid oxide fuel cells [J]. Oxid. Met., 2014, 82: 123
doi: 10.1007/s11085-014-9481-8
|
13 |
Quadakkers W J, Piron-Abellan J, Shemet V, et al. Metallic interconnectors for solid oxide fuel cells-a review [J]. Mater. High Temp., 2003, 20: 115
|
14 |
Chiu Y T, Lin C K. Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect [J]. J. Power Sources, 2012, 198: 149
doi: 10.1016/j.jpowsour.2011.09.056
|
15 |
Froitzheim J, Meier G H, Niewolak L, et al. Development of high strength ferritic steel for interconnect application in SOFCs [J]. J. Power Sources, 2008, 178: 163
doi: 10.1016/j.jpowsour.2007.12.028
|
16 |
Seo H S, Jin G X, Jun J H, et al. Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect [J]. J. Power Sources, 2008, 178: 1
doi: 10.1016/j.jpowsour.2007.12.026
|
17 |
Jin G X, Pan F H, Lang C, et al. Elevated temperature electrical conductivity of STS 444/Y alloy used for SOFC interconnects [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 367
|
17 |
金光熙, 潘凤红, 郎成 等. SOFC连接体用STS444/Y合金的高温导电性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 367
|
18 |
Alnegren P, Sattari M, Froitzheim J, et al. Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures [J]. Corros. Sci., 2016, 110: 200
doi: 10.1016/j.corsci.2016.04.030
|
19 |
Miao Z Y, Chen L, Zhang W Y, et al. Formation and thermal stress analysis of oxide of interconnects alloy in SOFC reduction atmosphere [J]. Rare Met. Mater. Eng., 2021, 50: 2069
|
19 |
缪钟毅, 陈霖, 张文颖 等. 连接体合金在SOFC还原气氛下氧化膜的形成及热应力分析 [J]. 稀有金属材料与工程, 2021, 50: 2069
|
20 |
Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
doi: 10.1016/j.corsci.2020.109112
|
21 |
Quadakkers W J, Hänsel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments [J]. Mater. Corros., 1998, 49: 252
doi: 10.1002/(SICI)1521-4176(199804)49:4<252::AID-MACO252>3.0.CO;2-H
|
22 |
Jian L, Huezo J, Ivey D G. Carburisation of interconnect materials in solid oxide fuel cells [J]. J. Power Sources, 2003, 123: 151
doi: 10.1016/S0378-7753(03)00535-4
|
23 |
Niewolak L, Wessel E, Hüttel T, et al. Behavior of interconnect steels in carbon containing simulated anode gas of solid oxide fuel cells [J]. J. Electrochem. Soc., 2012, 159: F725
doi: 10.1149/2.033211jes
|
24 |
Zeng Z. Corrosion of metallic interconnects for SOFC in fuel gases [J]. Solid State Ionics, 2004, 167: 9
doi: 10.1016/j.ssi.2003.11.026
|
25 |
Grabke H J. Carburization, carbide formation, metal dusting, coking [J]. Mater. Tehnol., 2002, 36: 297
|
26 |
Horita T, Kshimoto H, Yamaji K, et al. Anomalous oxidation of ferritic interconnects in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2008, 33: 3962
doi: 10.1016/j.ijhydene.2007.07.058
|
27 |
Horita T, Kishimoto H, Yamaji K, et al. Oxide Scale Formation and Stability of Fe-Cr Alloy Interconnects under Dual Atmospheres and Current Flow Conditions for SOFCs [J]. J. Electrochem. Soc., 2006, 153: A2007
doi: 10.1149/1.2335944
|
28 |
Promdirek P, Lothongkum G, Wouters Y, et al. Effect of humidity on the corrosion kinetics of ferritic stainless steels subjected to synthetic biogas [J]. Mater. Sci. Forum, 2011, 696: 417
doi: 10.4028/www.scientific.net/MSF.696.417
|
29 |
Promdirek P, Lothongkhum G, Chandra-Ambhorn S, et al. Behaviour of ferritic stainless steels subjected to dry biogas atmospheres at high temperatures [J]. Mater. Corros., 2010, 62: 616
|
30 |
Liu K J, Luo J H, Johnson C, et al. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment [J]. J. Power Sources, 2008, 183: 247
doi: 10.1016/j.jpowsour.2008.04.025
|
31 |
Chou Y S, Stevenson J W, Singh P. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect [J]. J. Power Sources, 2008, 184: 238
doi: 10.1016/j.jpowsour.2008.06.020
|
32 |
Yang Z, Xia G, Walker M, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrogen Energy, 2007, 32: 3770
doi: 10.1016/j.ijhydene.2006.08.056
|
33 |
Yang Z G, Xia G G, Singh P, et al. Effects of water vapor on oxidation behavior of ferritic stainless steels under solid oxide fuel cell interconnect exposure conditions [J]. Solid State Ionics, 2005, 176: 1495
doi: 10.1016/j.ssi.2005.03.019
|
34 |
Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
doi: 10.1149/1.1603012
|
35 |
Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
doi: 10.1149/1.1810393
|
36 |
Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrogen Energy, 2018, 43: 14665
doi: 10.1016/j.ijhydene.2018.05.165
|
37 |
Skilbred A W B, Haugsrud R. The effect of water vapour on the corrosion of sandvik sanergy HT under dual atmosphere conditions [J]. Oxid. Met., 2013, 79: 639
doi: 10.1007/s11085-012-9313-7
|
38 |
Galerie A, Petit J P, Wouters Y, et al. Water vapour effects on the oxidation of chromia-forming alloys [J]. Mater. Sci. Forum, 2011, 696: 200
doi: 10.4028/www.scientific.net/MSF.696.200
|
39 |
Hultquist G, Tveten B, Hörnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence [J]. Oxid. Met., 2000, 54: 1
doi: 10.1023/A:1004610626903
|
40 |
Park E, Hüning B, Spiegel M. Evolution of near-surface concentration profiles of Cr during annealing of Fe-15Cr polycrystalline alloy [J]. Appl. Surf. Sci., 2005, 249: 127
doi: 10.1016/j.apsusc.2004.11.078
|
41 |
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
doi: 10.1007/s11085-007-9090-x
|
42 |
Holcomb G R, Ziomek-Moroz M, Cramer S D, et al. Dual-environment effects on the oxidation of metallic interconnects [J]. J. Mater. Eng. Perform., 2006, 15: 404
doi: 10.1361/105994906X117198
|
43 |
Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800 ℃ [J]. J. Power Sources, 2018, 392: 129
doi: 10.1016/j.jpowsour.2018.04.088
|
44 |
Zhou J W, Chen Q F, Sang J K, et al. Conductivity and oxidation behavior of Fe-16Cr alloy as solid oxide fuel cell interconnect under long-stability and thermal cycles [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 668
doi: 10.1007/s40195-020-01147-4
|
45 |
Kurokawa H, Oyama Y, Kawamura K, et al. Hydrogen permeation through Fe-16Cr alloy interconnect in atmosphere simulating SOFC at 1073 K [J]. J. Electrochem. Soc., 2004, 151: A1264
doi: 10.1149/1.1767349
|
46 |
Young D J, Zurek J, Singheiser L, et al. Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar-H2-H2O [J]. Corros. Sci., 2011, 53: 2131
doi: 10.1016/j.corsci.2011.02.031
|
47 |
Babelot C, Fang Q, Blum L, et al. Investigation of Ni-coated-steel-meshes as alternative anode contact material to nickel in an SOFC stack [J]. Int. J. Hydrogen Energy, 2019, 44: 8493
doi: 10.1016/j.ijhydene.2019.01.282
|
48 |
Garcia-Fresnillo L, Shemet V, Chyrkin A, et al. Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800 ℃ [J]. J. Power Sources, 2014, 271: 213
doi: 10.1016/j.jpowsour.2014.07.189
|
49 |
Li J, Zhang W Y, Yang J J, et al. Oxidation behavior of metallic interconnect in solid oxide fuel cell stack [J]. J. Power Sources, 2017, 353: 195
doi: 10.1016/j.jpowsour.2017.03.092
|
50 |
Li Y H, Jiang Y L, Wu J W, et al. Effect of electrical current on solid oxide fuel cells metallic interconnect oxidation in syngas [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 41
doi: 10.1111/j.1744-7402.2009.02430.x
|
51 |
Li Y H, Jiang Y L, Wu J W, et al. Corrosion behavior of ebrite and SS430 in coal syngas with loaded current [J]. Int. J. Appl. Ceram. Technol., 2011, 8: 60
doi: 10.1111/j.1744-7402.2010.02553.x
|
52 |
Si X Q, Cao J, Ritucci I, et al. Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization [J]. Int. J. Hydrogen Energy, 2019, 44: 3063
doi: 10.1016/j.ijhydene.2018.11.071
|
53 |
Kobsiriphat W, Barnett S. Ag-Cu-Ti braze materials for sealing SOFCs [J]. J. Fuel. Cell. Sci. Technol., 2008, 5: 011002
|
54 |
Haanappel V A C, Shemet V, Gross S M, et al. Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions [J]. J. Power Sources, 2005, 150: 86
doi: 10.1016/j.jpowsour.2005.02.015
|
55 |
Batfalsky P, Haanappel V A C, Malzbender J, et al. Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks [J]. J. Power Sources, 2006, 155: 128
doi: 10.1016/j.jpowsour.2005.05.046
|
56 |
Sakai N, Horita T, Yamaji K, et al. Material transport and degradation behavior of SOFC interconnects [J]. Solid State Ionics, 2006, 177: 1933
doi: 10.1016/j.ssi.2006.04.044
|
57 |
Jackson R W, Pettit F S, Meier G H. The behavior of nickel and silver in a simulated solid oxide fuel cell environment [J]. J. Power Sources, 2008, 185: 1030
doi: 10.1016/j.jpowsour.2008.08.056
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|