Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 508-516    DOI: 10.11902/1005.4537.2020.140
  研究报告 本期目录 | 过刊浏览 |
粒径和温度对20号钢冲刷腐蚀协同作用的影响
任莹1, 赵会军1(), 周昊1, 张建伟1, 刘雯1, 杨足膺2, 王磊3
1.江苏省油气储运技术重点实验室 常州 213016
2.常州大学商学院 常州 213016
3.西南油气田公司输气管理处 成都 610000
Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand
REN Ying1, ZHAO Huijun1(), ZHOU Hao1, ZHANG Jianwei1, LIU Wen1, YANG Zuying2, WANG Lei3
1.Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou 213016, China
2.Business School Changzhou University, Changzhou 213016, China
3.Petrochina Southwest Oil and Gas Field Company Gas Transportation Management Department, Chengdu 610000, China
全文: PDF(14226 KB)   HTML
摘要: 

利用旋转圆柱电极实验装置,在模拟油田采出液中,通过腐蚀失重、形貌观测和电化学分析等方法量化20号钢在不同砂粒粒径和温度下的冲刷腐蚀协同作用。结果表明,砂粒粒径增大对20号钢的冲刷磨损有明显的促进作用,这与形貌观测较符合。随砂粒粒径增大,腐蚀促进冲刷的作用和冲刷促进腐蚀的作用均先增加后减小。在砂粒粒径为40~70 μm到120~200 μm时,材料冲刷腐蚀以冲刷-电化学混合控制为主;砂粒粒径为200~300 μm时,以冲刷磨损为主导。在不同的温度下,20号钢的冲刷腐蚀均以冲刷-电化学为主要控制;温度越高,腐蚀对冲刷的促进作用越显著。

关键词 20号钢冲刷腐蚀砂粒粒径温度协同作用    
Abstract

The erosion-corrosion behavior of 20 steel in simulated oilfield produced fluid with different sand particle sizes and at different temperatures was studied via a rotating cylindrical electrode experimental device, as well as other methods such as corrosion mass loss measurement, morphological observation and electrochemical techniques. The results show that the increase of sand particle size can obviously promote the erosion wear of 20 steel, which is consistent with the morphology observation. With the increase of sand particle size, both the effect of corrosion promoting erosion and the effect of erosion promoting corrosion firstly increase and then decrease. When the sand particle size is in the range of 40~70 μm to 120~200 μm, the erosion-corrosion mode of the steel may mainly be ascribed to the mixed control of erosion and electrochemical corrosion. When the particle size of the sand is 200~300 μm, the erosion wear is dominant. The erosion-corrosion of 20 steel at different temperatures is mainly controlled by erosion and electrochemical corrosion. The higher the temperature, the much obvious the promotion effect of corrosion on erosion.

Key words20 steel    erosion corrosion    sand particle size    temperature    synergism effect
收稿日期: 2020-08-03     
ZTFLH:  TG174  
基金资助:国家自然科学基金(41801194);江苏省油气储运重点实验室开放课题(CDYQCY202004);2019年度常州大学大学生创新创业基金(2019-04-C-36)
通讯作者: 赵会军     E-mail: zhj@cczu.edu.cn
Corresponding author: ZHAO Huijun     E-mail: zhj@cczu.edu.cn
作者简介: 任莹,女,1996年生,硕士生

引用本文:

任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
Ying REN, Huijun ZHAO, Hao ZHOU, Jianwei ZHANG, Wen LIU, Zuying YANG, Lei WANG. Effect of Sand Size and Temperature on Synergistic Effect of Erosion-corrosion for 20 Steel in Simulated Oilfield Produced Fluid with Sand. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 508-516.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.140      或      https://www.jcscp.org/CN/Y2021/V41/I4/508

图1  20号钢在不同砂粒粒径下冲刷腐蚀极化曲线
Sand size / μmEcorr / VIcorr / A·cm-2
40~70-0.6601.194×10-4
70~120-0.7121.717×10-4
120~200-0.6641.906×10-4
200~300-0.6631.469×10-4
表1  不同粒径下20号钢冲刷腐蚀极化曲线拟合数据
图2  不同粒径下20号钢冲刷腐蚀电化学阻抗谱
图3  不同粒径下20号钢的电化学阻抗谱拟合等效电路图
Sand size / μmRs / Ω·cm2Rp1 / Ω·cm2CPE1-Y0 / Ω·cm2·s-1nRp2 / Ω·cm2CPE2-Y0 / Ω·cm2·s-1n
40~702.056.2761.82×10-50.7043106.80.010890.7348
70~1202.5714.9534.3×10-60.8307103.70.018820.6949
120~2002.0063.9621.757×10-50.727975.670.01580.7399
200~3002.2784.8884.063×10-60.836580.430.017520.7215
表2  不同粒径下20号钢的电化学阻抗谱拟合数据
图4  不同粒径下20号钢的质量损失速率
Sand size / μmE / mg·cm-2·h-1C / mg·cm-2·h-1Ec / mg·cm-2·h-1Ce / mg·cm-2·h-1E / CT / mg·cm-2·h-1
40~701.5400.1661.5230.1049.2771.706
70~1201.6160.1791.6090.1299.0281.795
120~2001.9640.1981.9390.1389.9192.162
200~3001.7080.1521.6870.09811.2371.860
表3  不同粒径条件下冲刷腐蚀各分量定量分析结果
Dominant factorE / C value
Electrochemical corrosion dominatesE / C<0.1
Electrochemistry-erosion dominates0.1<E / C<1
Erosion-electrochemistry dominates1<E / C<10
Erosion and wear dominateE / C>10
表4  冲刷腐蚀过程中主导因素判定表
图5  不同粒径下20号钢的冲刷腐蚀形貌
图6  不同温度下20号钢的冲刷腐蚀极化曲线
Temperature / ℃Ecorr / VIcorr / A·cm-2
20-0.5618.053×10-6
40-0.7552.829×10-5
60-0.8581.132×10-4
80-0.8615.699×10-4
表5  20号钢在不同温度下冲刷腐蚀极化曲线拟合数据
图7  各温度下20号钢纯腐蚀电化学阻抗谱
图8  各温度下20号钢冲刷腐蚀电化学阻抗谱
图9  不同温度下20号钢的拟合等效电路图
Temperature / ℃Rs / Ω·cm2Rp1 / Ω·cm2CPE1-Y0 / Ω·cm2·s-1nRp2 / Ω·cm2CPE2-Y0 / Ω·cm2·s-1n
206.50559.184.494×10-30.861564.740.58080.7872
405.43533.416.42×10-30.799615.690.89331
602.42111.041.291×10-20.843512.220.64310.8808
802.692.1112.854×10-40.72034.9090.031390.7417
表6  不同温度下20号钢的电化学阻抗谱拟合数据
图10  不同温度下20号钢的质量损失速率
Temperature / ℃E / mg·cm-2·h-1C / mg·cm-2·h-1Ec / mg·cm-2·h-1Ce / mg·cm-2·h-1E / CT / mg·cm-2·h-1
201.2650.1481.0480.0818.5471.413
401.5830.3491.5730.0194.5361.932
602.1960.5752.1820.0313.8212.771
802.7030.7142.6890.0543.7823.417
表7  不同温度下的腐蚀数据分析
图11  不同温度下20号钢冲刷腐蚀形貌
1 Dai Z, Shen S M, Ding G Q. Erosion-corrosion and protection of metals in fluids with solid particles [J]. Corros. Prot., 2007, 28: 86
1 代真, 沈士明, 丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护 [J]. 腐蚀与防护, 2007, 28: 86
2 López D, Falleiros N A, Tschiptschin A P. Effect of nitrogen on the corrosion-erosion synergism in an austenitic stainless steel [J]. Tribol. Int., 2011, 44: 610
3 Khan R, Ya H H, Pao W, et al. Erosion-corrosion of 30°, 60° and 90° carbon steel elbows in a multiphase flow containing sand particles [J]. Materials, 2019, 12: 3898
4 Xiang H L, Hu Y R, Cao H T, et al. Erosion-corrosion behavior of SAF3207 hyper-duplex stainless steel [J]. Int. J. Mine. Metall. Mater., 2019, 26: 1415
5 Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262: 791
6 Zadeh S A, Rashidi P. The effect of fluid velocity and microstructure on erosion corrosion of two-phase CK45 steel [J]. Results Mater., 2020, 6: 100077
7 Xu Z. Research on the erosion-corrosion behavior of P110 steel in liquid-solid two-phase flow [D]. Daqing: Northeast Petroleum University, 2011
7 徐哲. 液固两相流条件下P110钢冲刷腐蚀研究 [D]. 大庆: 东北石油大学, 2011
8 Aguirre J, Walczak M. Effect of dissolved copper ions on erosion-corrosion synergy of X65 steel in simulated copper tailing slurry [J]. Tribol. Int., 2017, 114: 329
9 Khayatan N, Ghasemi H M, Abedini M. Synergistic erosion-corrosion behavior of commercially pure titanium at various impingement angles [J]. Wear, 2017, 380/381: 154
10 Zhang F X, Ba D, Liu H T, et al. Study on the erosion and corrosion of super 13Cr tubing in fracturing [J]. China Pet. Mach., 2014, 42(8): 89
10 张福祥, 巴旦, 刘洪涛等. 压裂过程超级13Cr油管冲刷腐蚀交互作用研究 [J]. 石油机械, 2014, 42(8): 89
11 Owen J, Ramsey C, Barker R, et al. Erosion-corrosion interactions of X65 carbon steel in aqueous CO2 environments [J]. Wear, 2018, 414/415: 376
12 Zhang A F, Xing J D, Zhou X Y. A quantitative investigation on interaction between erosion and corrosion of carbon steel and stainless steel in corrosion slurry [J]. Foundry, 2003, 52: 260
12 张安峰, 邢建东, 周心艳. 碳钢与不锈钢在腐蚀浆料中冲刷腐蚀交互作用的定量研究 [J]. 铸造, 2003, 52: 260
13 Lin Y Z, Liu J J, Yong X Y, et al. Application of numerical method to study of flow-induced corrosion—(I) metal corrosion under laminar condition [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 1
13 林玉珍, 刘景军, 雍兴跃等. 数值计算法在流体腐蚀研究中的应用—(I) 层流条件下金属的腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 1
14 Li P. Study on erosion-corrosion behavior of stainless steel in acidic liquid-solid two-phase flow [D]. Wuhan: Huazhong University of Science and Technology, 2006
14 李平. 酸性液固两相流中不锈钢冲刷腐蚀行为的研究 [D]. 武汉: 华中科技大学, 2006
15 Cao X W, Xu K, Peng W S. Simulation and analysis of liquid-solid two-phase flow erosion failure in pipe bends [J]. Surf. Technol., 2016, 45(8): 124
15 曹学文, 胥锟, 彭文山. 弯管液固两相流冲蚀失效模拟分析 [J]. 表面技术, 2016, 45(8): 124
16 Jiang Z C, Yang Y, Peng H P, et al. Erosion corrosion behavior of X80 steel in multiphase flow with different sand particle sizes [J]. Corros. Prot., 2018, 37(11): 76
16 姜志超, 杨燕, 彭浩平等. X80钢在不同砂粒粒径下的多相流中的冲刷腐蚀行为 [J]. 腐蚀防护, 2018, 37(11): 76
17 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
17 曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
18 Li Q. Study of local erosion-corrosion of pipeline steel under multiphase flow of oil/water/sand [D]. Qingdao: China University of Petroleum (East China), 2013
18 李强. 管线钢油/水/砂多相流冲刷局部腐蚀研究 [D]. 青岛: 中国石油大学 (华东), 2013
19 Stack M M, El Badia T M A. Mapping erosion-corrosion of WC/Co-Cr based composite coatings: particle velocity and applied potential effects [J]. Surf. Coat. Technol., 2006, 201: 1335
20 Zhang X Y, Zhu C, Sun L L, et al. Erosion-corrosion influence of sand particle size and chloride ions on P110 steel [J]. Chem. Eng. Mach., 2012, 39: 447
20 张旭昀, 朱闯, 孙丽丽等. 砂粒和氯离子对P110钢冲刷与腐蚀性能的影响 [J]. 化工机械, 2012, 39: 447
21 Hao L S, Zheng F, Chen X P, et al. Erosion corrosion behavior of aluminum in flowing deionized water at various temperatures [J]. Materials, 2020, 13: 779
22 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
22 朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
23 Hu X, Neville A. The electrochemical response of stainless steels in liquid-solid impingement [J]. Wear, 2005, 258: 641
24 Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries [J]. Tribol. Int., 2002, 35: 643
25 Clark H M, Burmeister L C. The influence of the squeeze film on particle impact velocities in erosion [J]. Int. J. Impact Eng., 1992, 12: 415
26 Wang J C. Synergistic effect of erosion-corrosion of liquid-solid two-phase fluid [J]. J. Henan Sci. Technol., 2013, (10): 60
26 王建才. 液固两相流体冲刷腐蚀的协同作用 [J]. 河南科技, 2013, (10): 60
27 Zhang Y, Dong J H. Effect of dentist, temperature and scouring on the soda corrosion resistance performance of Ni-Cu alloy cast iron [J]. Found. Technol., 2011, 32: 642
27 张毅, 董俊慧. 烧碱浓度、温度、冲刷对镍铜合金铸铁耐碱腐蚀性能的影响 [J]. 铸造技术, 2011, 32: 642
[1] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[2] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[3] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[4] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[5] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[6] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[7] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[11] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[12] 逄旭光, 刘润青, 王文涛, 史艳华, 李飞, 梁平. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[13] 杨颖, 林翠, 赵晓斌, 张翼飞. TA2在LiBr溶液中的初期空化腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[14] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[15] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.