Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 501-507    DOI: 10.11902/1005.4537.2021.043
  研究报告 本期目录 | 过刊浏览 |
工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响
孙晓光1,2, 王子晗2, 徐学旭2(), 韩晓辉1, 李刚卿1, 刘智勇2
1.中车青岛四方机车车辆股份有限公司技术工程部 青岛 266111
2.北京科技大学腐蚀与防护中心 北京 100083
Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy
SUN Xiaoguang1,2, WANG Zihan2, XU Xuexu2(), HAN Xiaohui1, LI Gangqing1, LIU Zhiyong2
1.Technical Engineering Department, CRRC Qingdao Sifang Co. LTD. , Qingdao 266111, China
2.Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6232 KB)   HTML
摘要: 

使用力学性能测试、轴向力加载疲劳测试、扫描电子显微镜、电化学测试等手段,研究了模拟工业大气环境中Al-Mg-Si合金母材及其焊接接头的腐蚀疲劳特征。结果表明:Al-Mg-Si合金对接焊接接头的力学性能低于母材,而且在模拟工业大气环境中更易腐蚀。焊接接头的腐蚀疲劳敏感性更高,原因是其焊接缺陷处容易成为腐蚀疲劳裂纹优先萌生的区域,最终导致试样在焊缝区域发生疲劳断裂。

关键词 Al-Mg-Si合金焊接接头腐蚀疲劳特征模拟工业大气    
Abstract

The corrosion fatigue characteristics of the Al-Mg-Si alloy and its butt welded joints in a simulated industrial atmosphere are studied by means of mechanical performance test, axial force loading fatigue test, scanning electron microscope, electrochemical test and other methods. The results show that the mechanical properties of butt-welded joints of Al-Mg-Si alloy are lower than that of the base metal, and the welded joints are more prone to corrosion in the simulated industrial atmosphere. The corrosion fatigue sensitivity of welded joints is higher, the corrosion fatigue cracks of the base metal initiate from corrosion pits at grain boundaries, while the fatigue cracks of the welded joints initiate easily at the locations rich in welding defects and inclusions of the weld seam. The existence of large number of welding defects and Al2O3 inclusions introduced during the welding process may be responsible to why the corrosion fatigue performance of the welded joints of Al-Mg-Si alloy is lower than that of the base metal. Besides, the presence of inclusions will induce stress concentration, and around which high-density lattice distortion areas will also emerge. These areas will act as anodes to be preferentially dissolved and thereby, where to become the priority area of corrosion fatigue crack initiation, eventually lead to fatigue fracture of the test piece. Therefore, for the actual production, the forming process and welding process should be optimized, and the number of welding defects and inclusions should be controlled, so as to improve the corrosion fatigue performance of the alloy.

Key wordsAl-Mg-Si alloy    welded joint    corrosion fatigue characteristic    simulated industrial atmosphere
收稿日期: 2021-03-08     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52071017);国家重点研发计划(2017YFB0702300)
通讯作者: 徐学旭     E-mail: xuxuexu1992@163.com
Corresponding author: XU Xuexu     E-mail: xuxuexu1992@163.com
作者简介: 孙晓光,男,1984年生,博士,高级工程师

引用本文:

孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
Xiaoguang SUN, Zihan WANG, Xuexu XU, Xiaohui HAN, Gangqing LI, Zhiyong LIU. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 501-507.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.043      或      https://www.jcscp.org/CN/Y2021/V41/I4/501

图1  Al-Mg-Si合金焊接接头宏观形貌
图2  Al-Mg-Si合金母材及焊接接头的应力-应变拉伸曲线
图3  Al-Mg-Si合金母材及焊接接头的极化曲线和电化学阻抗谱
图4  Al-Mg-Si合金母材及焊接接头电化学阻抗谱的拟合电路图
PositionEcorr / VIp / A·cm-2Rs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2
Base metal-0.551.94×10-5232.8506.94442
Welded joint-0.572.52×10-5282.1400.63173
表1  Al-Mg-Si合金母材及焊接接头的电化学腐蚀参数
图5  Al-Mg-Si合金母材及焊接接头在模拟工业大气中的疲劳周次-峰值应力柱状图
图6  Al-Mg-Si合金母材及焊接接头试样在模拟工业大气中腐蚀疲劳实验后的宏观形貌
图7  Al-Mg-Si合金母材及焊接接头在150和80 MPa下模拟工业大气环境中腐蚀疲劳断口的微观形貌
图8  Al-Mg-Si合金焊接接头在模拟工业大气中80 MPa下的腐蚀疲劳断口侧面形貌及EDS谱
1 Winter L, Hockauf K, Lampke T. High cycle fatigue behavior of the severely plastically deformed 6082 aluminum alloy with an anodic and plasma electrolytic oxide coating [J]. Surf. Coat. Technol., 2018, 349: 576
2 Xu X C, Liu D X, Zhang X H, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40: 88
3 Costa J D M, Jesus J S, Loureiro A, et al. Fatigue life improvement of MIG welded aluminium T-joints by friction stir processing [J]. Int. J. Fatigue, 2014, 61: 244
4 Dong P, Sun D Q, Li H M. Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy [J]. Mater. Sci. Eng., 2013, A576: 29
5 Svenningsen G, Lein J E, Bjørgum A, et al. Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys [J]. Corros. Sci., 2006, 48: 226
6 Liu H B, Yang S L, Xie C J, et al. Microstructure characterization and mechanism of fatigue crack initiation near pores for 6005A CMT welded joint [J]. Mater. Sci. Eng., 2017, A707: 22
7 Liu F Y, Tan C W, Wu L J, et al. Influence of waveforms on Laser-MIG hybrid welding characteristics of 5052 aluminum alloy assisted by magnetic field [J]. Opt. Laser Technol., 2020, 132: 106508
8 Qiao J N, Lu J X, Wu S K. Fatigue cracking characteristics of fiber Laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy [J]. Int. J. Fatigue, 2017, 98: 32
9 Genel K. The effect of pitting on the bending fatigue performance of high-strength aluminum alloy [J]. Scr. Mater., 2007, 57: 297
10 Pao P S, Gill S J, Feng C R, et al. Corrosion-fatigue crack growth in friction stir welded Al 7050 [J]. Scr. Mater., 2001, 45: 605
11 Czechowski M. Low-cycle fatigue of friction stir welded Al-Mg alloys [J]. J. Mater. Process. Technol., 2005, 164/165: 1001
12 Fonda R W, Pao P S, Jones H N, et al. Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456 [J]. Mater. Sci. Eng., 2009, A519: 1
13 Sabelkin V, Mall S, Misak H. Investigation into corrosion pit-to-fatigue crack transition in 7075-T6 aluminum alloy [J]. J. Mater. Eng. Perform., 2017, 26: 2535
14 Chanyathunyaroj K, Phetchcrai S, Laungsopapun G, et al. Fatigue characteristics of 6061 aluminum alloy subject to 3.5%NaCl environment [J]. Int. J. Fatigue, 2020, 133: 105420
15 Cui T F, Liu D X, Cai J, et al. Effect of pre-corrosion and corrosion/fatigue alternation frequency on the fatigue life of 7B04-T6 aluminum alloy [J]. J. Mater. Res., 2016, 31: 3869
16 Xu X X, Liu Z Y, Zhao T L, et al. Corrosion fatigue behavior of Fe-16Mn-0.6C-1.68Al twinning-induced plasticity steel in simulated seawater [J]. Corros. Sci., 2021, 182: 109282
17 Li X D, Mu Z T, Su W G, et al. Corrosion fatigue fracture analysis of 6A02 aluminum alloy [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2013, 34: 285
17 李旭东, 穆志韬, 苏维国等. 6A02铝合金腐蚀疲劳断口分析 [J]. 青岛科技大学学报 (自然科学版), 2013, 34: 285
18 Dickerson T L, Przydatek J. Fatigue of friction stir welds in aluminium alloys that contain root flaws [J]. Int. J. Fatigue, 2003, 25: 1399
19 Costa J D, Ferreira J A M, Borrego L P, et al. Fatigue behaviour of AA6082 friction stir welds under variable loadings [J]. Int. J. Fatigue, 2012, 37: 8
20 Talemi R. A numerical study on effects of randomly distributed subsurface hydrogen pores on fretting fatigue behaviour of aluminium AlSi10Mg [J]. Tribol. Int., 2020, 142: 105997
21 Shahri M M, Sandström R. Fatigue analysis of friction stir welded aluminium profile using critical distance [J]. Int. J. Fatigue, 2010, 32: 302
22 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
23 Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying [J]. Corros. Sci., 2020, 170: 108693
[1] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[2] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[3] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[4] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[5] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[6] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[7] 刘智勇, 万红霞, 李禅, 杜翠薇, 李晓刚, 刘翔. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321-326.
[8] 邢云颖, 刘智勇, 杜翠薇, 李晓刚, 刘然克, 朱敏. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[9] 蔡超,杨建锋,李劲风,曾锋利,谭星. 用开尔文探针研究Al-Mg-Si合金在MgCl2液滴下的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31(6): 467-472.
[10] 孔德军,吴永忠,龙丹,周朝政. 激光冲击处理对X70管线钢焊接接头H2S应力腐蚀影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 125-129.
[11] 李朝兴;李劲风;BIRBILIS Nick;贾志强;郑子樵. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
[12] 倪红芳; 凌祥; 彭薇薇 . 玻璃喷丸处理提高304不锈钢焊接接头抗应力腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 152-156 .
[13] 关凯书; 王晓燕; 王志文 . Ni-P化学镀层对304L钢焊接接头的应力腐蚀的影响[J]. 中国腐蚀与防护学报, 1999, 19(6): 333-338 .
[14] 刘敏;王勇;刘广瑞;唐慕尧;孟繁森. 改善焊接圆管抗应力腐蚀性能的水冷法研究[J]. 中国腐蚀与防护学报, 1998, 18(3): 187-192.