Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 461-468    DOI: 10.11902/1005.4537.2021.052
  研究报告 本期目录 | 过刊浏览 |
酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响
伊光辉, 郑大江, 宋光铃()
厦门大学材料学院 厦门 361005
Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel
YI Guanghui, ZHENG Dajiang, SONG Guangling()
College of Materials, Xiamen University, Xiamen 361005, China
全文: PDF(11900 KB)   HTML
摘要: 

分别研究了酸洗时间对316L不锈钢表面形貌、表面光学常数及其在3.5%NaCl溶液中耐蚀性能的影响。结果表明,适当酸洗可提升316L不锈钢耐腐蚀性能,但是过度酸洗则容易出现点蚀,耐腐蚀性能的提高是因为酸洗后316L不锈钢表面形成了富含Cr2O3的钝化膜,点蚀的出现是因为其表面出现的微孔促进了点蚀的形核。酸洗液残留于表面会使316L不锈钢局部表面生成更厚的钝化膜,具有不同的光学常数,从而导致宏观表面白斑的出现。

关键词 316L不锈钢酸洗白斑电化学椭偏    
Abstract

Acid pickling is an essential procedure in manufacturing stainless steel products. However, inappropriate operation may result in some defects on the product surfaces. To understand the pickling effect, the morphology and corrosion behavior of 316L stainless steel were assessed by means of laser confocal microscopy (LSM), scanning electron microscopy (SEM), atomic force microscope (AFM), potentialdynamic polarization (PP), electrochemical impedance spectroscopy (EIS), Mott-Schottky (MS) and ellipsometry (ES). The results indicated that the corrosion resistance of 316L stainless steel in 3.5%NaCl solution was improved after pickling, but pitting corrosion was found on the surface of 316L stainless steel if the steel was over-pickled. The enhancement of the corrosion resistance could be due to the formation of Cr2O3-riched passivation film on the surface after pickling. The pitting corrosion initiated from the pores in the passive film, which was formed after extended immersion in pickling acid. A pickling solution droplet remaining on the surface led to a thicker passive film formed locally, which had different optical reflection, and was displayed as a macroscopic white spot on the surface.

Key words316L stainless steel    acid pickling    white spot    electrochemistry    ellipsometry
收稿日期: 2021-03-16     
ZTFLH:  TG174  
通讯作者: 宋光铃     E-mail: guangling.song@hotmail.com
Corresponding author: SONG Guangling     E-mail: guangling.song@hotmail.com
作者简介: 伊光辉,男,1996年生,硕士生

引用本文:

伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
Guanghui YI, Dajiang ZHENG, Guangling SONG. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 461-468.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.052      或      https://www.jcscp.org/CN/Y2021/V41/I4/461

图1  316L不锈钢表面不同酸洗时间局部区域
图2  不同酸洗时间316L不锈钢的动电位极化曲线
Pickling time / minRs (Ω·cm2) / (error%)Y0 (F/s(1-n)) / (error%)n / (error%)Rp (Ω·cm2) / (error%)
051.86 (0.8757%)2.88×10-5 (0.89%)0.8506 (0.25%)2.99×105 (3.01%)
1047.63 (0.57%)9.38×10-6 (0.48 %)0.901 (0.12%)4.49×106 (5.66%)
2051.48 (2.28%)1.41×10-5 (1.90%)0.8585 (0.50%)2.16×106 (35.89%)
3051.98 (0.95%)1.18×10-5 (0.82%)0.9098 (0.21%)8.15×106 (21.28%)
4049.37 (0.59%)1.68×10-5 (0.53%)0.8952 (0.14%)2.62×106 (6.62%)
5051.89 (0.27%)1.52×10-5 (0.21%)0.8101 (0.06%)2.27×107 (24.80%)
表2  样品在3.5%NaCl溶液中EIS结果的拟合参数
图3  不同酸洗时间316L不锈钢的Nyquist图
Pickling time / minIcorr / nA·cm-2Ecorr / Vba / V·dec-1bc / V·dec-1
0131-0.0960.4130.105
1012.80.0400.4160.101
2011.90.0100.4370.104
3014.20.0300.3490.102
40120.0220.4100.100
509.970.0210.4920.093
表1  不同酸洗时间316L不锈钢样品的极化曲线腐蚀参数
图4  不同酸洗时间316L不锈钢样品的Bode图
图5  不同酸洗时间316L不锈钢的表面形貌
图6  不同酸洗时间316L不锈钢的表面粗糙度
图7  不同酸洗时间316L不锈钢表面钝化膜的SEM微观形貌
图8  不同酸洗时间316L不锈钢表面钝化膜的AFM微观形貌
图9  不同酸洗时间下316L不锈钢表面XPS谱
Pickling time / minFeO (Fe3O4)Cr2O3Cr2O3 / (Cr2O3+FeO (Fe3O4))
09.674.5131.81
105.165.3851.04
207.183.8534.9
308.234.5335.5
408.683.226.94
507.553.8433.71
表3  不同酸洗时间316L不锈钢样品的表面氧化物成分
图10  不同酸洗时间下316L不锈钢表面钝化膜厚度
Pickling time / minn / (error%)k / (error%)ε1 / (error%)ε2 / (error%)|ε| (ε12+ε22)
01.54 (0.65%)3.10 (0.47%)-7.23 (0.96%)9.58 (1.05%)12.00
101.80 (0.76%)3.43 (0.15%)-8.56 (0.24%)12.34 (0.91%)15.02
201.96 (0.48%)3.69 (0.23%)-9.81 (0.61%)14.46 (0.60%)17.47
301.98 (0.63%)3.67 (0.11%)-9.50 (0.29%)14.55 (0.73%)17.37
401.93 (0.69%)3.70 (0.14%)-9.97 (0.54%)14.26 (0.75%)17.40
501.94 (0.60%)3.70 (0.15%)-9.95 (0.66%)14.34 (0.59%)17.45
表4  不同酸洗时间316L不锈钢样品的光学常数和介电常数 (波长589 nm的结果)
图11  不同酸洗时间316L不锈钢样品的Mott-Schottky图
Pickling time / minEfb / V, n-typeEfb / V, p-typeNd / cm-3Na / cm-3
0-0.760.812.38×10171.93×1017
10-0.740.775.40×10174.33×1017
20-0.820.153.17×10183.59×1018
30-0.740.501.27×10181.45×1018
40-0.730.101.31×10181.41×1018
50-0.760.121.13×10181.27×1018
表5  不同酸洗时间316L不锈钢样品的平带电位、施主密度和受主密度
1 Heilala B, Mäkinen A, Nissinen I, et al. Evaluation of time-gated Raman spectroscopy for the determination of nitric, sulfuric and hydrofluoric acid concentrations in pickle liquor [J]. Microchem. J., 2018, 137: 342
2 Kang G M, Lee K, Park H, et al. Quantitative analysis of mixed hydrofluoric and nitric acids using Raman spectroscopy with partial least squares regression [J]. Talanta, 2010, 81: 1413
3 Ito M, Yoshioka M, Isobe T, et al. Development of automatic analyzer for sulfuric acid, mixed nitric acid, and hydrofluoric acid in stainless pickling process [J]. Kag. Kog. Ronbunshu, 1999, 25: 1
4 Takahari T, Kosaka M, Arigane H. Behavior of ferricfluoride ions in the pickling solution of nitric acid and hydrofluoric acid for stainless steels [J]. Tetsu to Hagane, 1984, 70: 1605
5 Gálvez J L, Dufour J, Negro C, et al. Determination of iron and chromium fluorides solubility for the treatment of wastes from stainless steel mills [J]. Chem. Eng. J., 2008, 136: 116
6 Bystriansky J, Malani'k K, Nova'k P. Stability of minority phases in some corrosion media [J]. Corros. Sci., 1993, 35: 355
7 Li L F, Caenen P, Celis J P. Effect of hydrochloric acid on pickling of hot-rolled 304 stainless steel in iron chloride-based electrolytes [J]. Corros. Sci., 2008, 50: 804
8 Jiang M F, Li X L, Yue Y Y, et al. Effect of hydrochloric acid on electrochemical behaviour of 430 stainless steel [J]. Mater. Res. Innov., 2014, 18: S5-62
9 Yue Y Y, Liu C J, Shi P Y, et al. Corrosion of hot-rolled 430 stainless steel in HCl-based solution [J]. Corros. Eng. Sci. Technol., 2016, 51: 581
10 Erdoğan M, Karakaya E, Aras M S, et al. Removal of trace amounts of copper from concentrated hydrochloric acid solutions [J]. Int. J. Electrochem. Sci., 2018, 13: 10934
11 Li H Y, Zhao A C. Pickling behavior of duplex stainless steel 2205 in hydrochloric acid solution [J]. Adv. Mater. Sci. Eng., 2019, 2019: 1
12 Li L F, Caenen P, Jiang M F. Electrolytic pickling of the oxide layer on hot-rolled 304 stainless steel in sodium sulphate [J]. Corros. Sci., 2008, 50: 2824
13 Yi G H, Zheng D J, Song G L. Surface white spot and pitting corrosion of 316 L stainless steel [J]. Anti-Corros. Methods Mater., 2020, 68: 1
14 Lin J K, Ma G J, Qiao Z, et al. White spot analysis of a nuclear power plant reactor refueling pool stainless steel cladding [J]. Total Corros. Control, 2015, 29(7): 38
14 林建康, 马谷剑, 乔泽等. 某核电厂反应堆换料水池不锈钢覆面钢板白斑分析[J]. 全面腐蚀控制, 2015, 29(7): 38
15 Narvaez L, Miranda J M, Ronquillo A. Stainless steel pickling using ecologies friendly mixtures composed of H2O2-H2SO4-iones F [J]. Rev. Met., 2013, 49: 145
16 Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
17 Liu J, Zhang T, Meng G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation [J]. Corros. Sci., 2015, 91: 232
18 Hakiki N E, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels [J]. Corros. Sci., 1995, 37: 1809
[1] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[2] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[3] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[4] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[5] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[6] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[7] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[8] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[9] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[10] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[11] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[12] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[13] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[14] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[15] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.