Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 327-334    DOI: 10.11902/1005.4537.2020.115
  研究报告 本期目录 | 过刊浏览 |
低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究
李瑞涛1, 肖博1, 刘晓1, 朱忠亮1, 程义2, 李俊菀3, 曹杰玉3, 丁海民1, 张乃强1()
1.华北电力大学 电站能量传递转化及系统教育部重点实验室 北京 102206
2.哈尔滨锅炉有限公司 高效清洁燃煤电站锅炉国家重点实验室 哈尔滨 150046
3.西安热工研究院有限公司 西安 710054
Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide
LI Ruitao1, XIAO Bo1, LIU Xiao1, ZHU Zhongliang1, CHENG Yi2, LI Junwan3, CAO Jieyu3, DING Haimin1, ZHANG Naiqiang1()
1.Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, North China Electric Power University, Beijing 102206, China
2.State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler Co. Ltd. , Harbin 150046, China
3.Xi'an Thermal Power Research Institute Co. , Ltd, Xi'an 710054, China
全文: PDF(13996 KB)   HTML
摘要: 

通过低合金耐热钢T23在650 ℃/25 MPa的高温超临界二氧化碳 (s-CO2) 下的1000 h氧化实验获得了T23钢的氧化动力学特性,并借助SEM、XRD及EDS对氧化膜的形貌、物相和成分进行了分析。结果表明:T23钢在650 ℃/25 MPa的高温s-CO2中的氧化动力学符合立方规律,时间指数0.30。氧化膜具有典型的双层结构,外层氧化膜为Fe3O4且氧化膜疏松多孔,内层氧化膜较为致密含有大量尖晶石结构的Fe3-xCrxO4。T23材料在高温超临界CO2环境中形成的氧化膜较容易发生剥落,剥落腐蚀现象明显。

关键词 T23钢高温氧化高温s-CO2剥落腐蚀    
Abstract

The long term oxidation behavior of T23 steel, one of the low alloy heat resistant steels was examined in high-temperature supercritical CO2 at 650 ℃/25 MPa for 1000 h, so that, the oxidation kinetics of T23 steel was acquired. Meanwhile, the oxide scales formed on the steel were characterized by SEM, XRD and EDS. The results showed that the oxidation kinetics of T23 steel oxidized in high-temperature s-CO2 at 650 ℃/25 MPa followed the cubic law during the entire test duration. Meanwhile, the time index was also obtained by data analysis process and proved to be 0.30. The oxide scales formed on all the samples exposed for different time duration had a typical double-layered structure. Namely,the outer layer was porous and composed of Fe3O4. The inner layer composed of Fe3-xCrxO4 and was much denser than the outer layer. Also, the oxide scale formed on T23 steel in high-temperature s-CO2 was more likely to peel off and the exfoliation-like corrosion could be found obviously on the surface of the corroded steel.

Key wordsT23 steel    high-temperature oxidation    high-temperature s-CO2    exfoliated corrosion
收稿日期: 2020-07-08     
ZTFLH:  TG178  
基金资助:北京市科技计划(2017YFB0601804);北京市自然科学基金(2194085)
通讯作者: 张乃强     E-mail: zhnq@ncepu.edu.cn
Corresponding author: ZHANG Naiqiang     E-mail: zhnq@ncepu.edu.cn
作者简介: 李瑞涛,男,1996年生,硕士

引用本文:

李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
Ruitao LI, Bo XIAO, Xiao LIU, Zhongliang ZHU, Yi CHENG, Junwan LI, Jieyu CAO, Haimin DING, Naiqiang ZHANG. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 327-334.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.115      或      https://www.jcscp.org/CN/Y2021/V41/I3/327

图1  高温s-CO2氧化试验平台结构示意图
图2  T23钢在650 °C/25 MPa高温s-CO2中的氧化增重曲线
图3  T23钢在650 ℃/25 MPa高温s-CO2中不同氧化时间后的表面形貌图
图4  氧化时长1000 h试样 (1#试样) 表面氧化皮剥落位置不同区域氧化物形貌
图5  氧化时长1000 h试样 (2#试样) 表面氧化皮剥落位置区域1的氧化物形貌
图6  图4a中氧化皮剥落形貌及区域面扫描结果
图7  T23钢在650 ℃/ 25 MPa高温s-CO2中氧化不同时间后的横截面形貌及对应的EDS线扫描结果
Oxidation duration of the sample / hTotal oxide film thickness / μmThickness of outer oxide film / μmThickness of inner oxide film / μm
200965640
6001377760
100018210577
表1  不同氧化时长试样表面氧化膜厚度
图8  图6c所示区域EDS面扫描结果
图9  T23钢在650 ℃/25 MPa高温s-CO2中氧化不同时长后的XRD谱
1 Deng Q H, Hu L H, Li J, et al. State-of-art and challenge on technologies of supercritical carbon dioxide electric power generation [J]. Therm. Turb., 2019, 48: 159
1 邓清华, 胡乐豪, 李军等. 超临界二氧化碳发电技术现状及挑战 [J]. 热力透平, 2019, 48: 159
2 Yuan Y, Dang Y Y, Yang Z, et al. Microstructure and properties of Ni-Fe-base superalloy for 700 ℃ advanced ultra supercritical unit final superheater [J]. Mater. Mech. Eng., 2020, 44(1): 44
2 袁勇, 党莹樱, 杨珍等. 700 ℃先进超超临界机组末级过热器用新型镍铁基高温合金的组织与性能 [J]. 机械工程材料, 2020, 44(1): 44
3 Angelino G. Carbon dioxide condensation cycles for power production [J]. J. Eng. Gas Turb. Power, 1968, 90: 287
4 Feher E G. The supercritical thermodynamic power cycle [J]. Energ. Convers., 1968, 8: 85
5 Allam R J, Palmer M R, Brown G W, et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions including carbon dioxide [J]. Energ. Proc., 2013, 37: 1135
6 Moisseytsev A, Sienicki J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor [J]. Nucl. Eng. Des., 2009, 239: 1362
7 Iverson B D, Conboy T M, Pasch J J, et al. Supercritical CO2 Brayton cycles for solar-thermal energy [J]. Appl. Energ., 2013, 111: 957
8 Liang Z Y, Gui Y, Zhao Q X. High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition [J]. J. Xi'an Jiaotong Univ., 2019, 53(7): 23
8 梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究 [J]. 西安交通大学学报, 2019, 53(7): 23
9 Nie M, Yu Z S, Zhou R C. Investigation of microstructure evolution law of 2.25Cr-1.6W (T23) ferrite steel [J]. Press. Vess. Technol., 2011, 28(6): 1
9 聂铭, 于在松, 周荣灿. 2.25Cr-1.6W (T23) 铁素体耐热钢服役过程中的组织演变研究 [J]. 压力容器, 2011, 28(6): 1
10 Rouillard F, Moine G, Martinelli L, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature I: mechanism of void-induced duplex oxide formation [J]. Oxid. Met., 2012, 77: 27
11 Rouillard F, Moine G, Tabarant M, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature II: mechanism of carburization [J]. Oxid. Met., 2012, 77: 57
12 Rouillard F, Martinelli L. Corrosion of 9Cr steel in CO2 at intermediate temperature III: modelling and simulation of void-induced duplex oxide growth [J]. Oxid. Met., 2012, 77: 71
13 Furukawa T, Rouillard F. Oxidation and carburizing of FBR structural materials in carbon dioxide [J]. Prog. Nucl. Energy, 2015, 82: 136
14 Martinelli L, Desgranges C, Rouillard F, et al. Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 ℃: Detailed analysis of the inner oxide layer [J]. Corros. Sci., 2015, 100: 253
15 Zhu Z L, Cheng Y, Xiao B, et al. Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide [J]. Energy, 2019, 175: 1075
16 Oleksak R P, Tylczak J H, Carney C S, et al. High-temperature oxidation of commercial alloys in supercritical CO2 and related power cycle environments [J]. JOM, 2018, 70: 1527
17 Rouillard F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2 [J]. Corros. Sci., 2016, 105: 120
18 Birks N, Meier G H, Pettit F S, translated by Xin L, Wang W. Introduction to the High-Temperature Oxidation of Metals [M]. Beijing: Higher Education Press, 2010: 20
18 Birks N, Meier G H, Pettit F S著, 辛丽, 王文译. 金属高温氧化导论 [M]. 北京: 高等教育出版社, 2010: 20
19 Brittan A, Mahaffey J, Anderson M. Corrosion and mechanical performance of grade 92 ferritic-martensitic steel after exposure to supercritical carbon dioxide [J]. Metall. Mater. Trans., 2020, 51A: 2564
20 Hsueh C H, Evans A G. Oxidation induced stresses and some effects on the behavior of oxide films [J]. J. Appl. Phys., 1983, 54: 6672
21 Evans H E, Lobb R C. Conditions for the initiation of oxide-scale cracking and spallation [J]. Corros. Sci., 1984, 24: 209
22 Osgerby S, Fry T. Simulating steam oxidation of high temperature plant under laboratory conditions: practice and interpretation of data [J]. Mater. Res., 2004, 7: 141
23 Zhu Z L, Xu H, Jiang D F, et al. The role of dissolved oxygen in supercritical water in the oxidation of ferritic–martensitic steel [J]. J. Supercrit. Fluid., 2016, 108: 56
24 Wright I G, Dooley R B. Steam-side scale morphologies associated with scale exfoliation from ferritic steel T22 [J]. Mater. High Temp., 2013, 30: 168
25 Zhong X Y, Wu X Q, Han E H. The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant [J]. J. Supercrit. Fluid., 2012, 72: 68
26 Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
27 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
28 Rouillard F, Charton F, Moine G. Corrosion behavior of different metallic materials in supercritical carbon dioxide at 550 ℃ and 250 bars [J]. Corrosion-us, 2011, 67: 1
[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[4] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[5] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[6] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[7] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[8] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[9] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[10] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[13] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[14] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[15] 赵凤, 鲁法云, 穆楠, 郭富安, 张莉. 7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.