|
|
低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 |
李瑞涛1, 肖博1, 刘晓1, 朱忠亮1, 程义2, 李俊菀3, 曹杰玉3, 丁海民1, 张乃强1( ) |
1.华北电力大学 电站能量传递转化及系统教育部重点实验室 北京 102206 2.哈尔滨锅炉有限公司 高效清洁燃煤电站锅炉国家重点实验室 哈尔滨 150046 3.西安热工研究院有限公司 西安 710054 |
|
Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide |
LI Ruitao1, XIAO Bo1, LIU Xiao1, ZHU Zhongliang1, CHENG Yi2, LI Junwan3, CAO Jieyu3, DING Haimin1, ZHANG Naiqiang1( ) |
1.Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, North China Electric Power University, Beijing 102206, China 2.State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler Co. Ltd. , Harbin 150046, China 3.Xi'an Thermal Power Research Institute Co. , Ltd, Xi'an 710054, China |
引用本文:
李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
Ruitao LI,
Bo XIAO,
Xiao LIU,
Zhongliang ZHU,
Yi CHENG,
Junwan LI,
Jieyu CAO,
Haimin DING,
Naiqiang ZHANG.
Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 327-334.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.115
或
https://www.jcscp.org/CN/Y2021/V41/I3/327
|
1 |
Deng Q H, Hu L H, Li J, et al. State-of-art and challenge on technologies of supercritical carbon dioxide electric power generation [J]. Therm. Turb., 2019, 48: 159
|
1 |
邓清华, 胡乐豪, 李军等. 超临界二氧化碳发电技术现状及挑战 [J]. 热力透平, 2019, 48: 159
|
2 |
Yuan Y, Dang Y Y, Yang Z, et al. Microstructure and properties of Ni-Fe-base superalloy for 700 ℃ advanced ultra supercritical unit final superheater [J]. Mater. Mech. Eng., 2020, 44(1): 44
|
2 |
袁勇, 党莹樱, 杨珍等. 700 ℃先进超超临界机组末级过热器用新型镍铁基高温合金的组织与性能 [J]. 机械工程材料, 2020, 44(1): 44
|
3 |
Angelino G. Carbon dioxide condensation cycles for power production [J]. J. Eng. Gas Turb. Power, 1968, 90: 287
|
4 |
Feher E G. The supercritical thermodynamic power cycle [J]. Energ. Convers., 1968, 8: 85
|
5 |
Allam R J, Palmer M R, Brown G W, et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions including carbon dioxide [J]. Energ. Proc., 2013, 37: 1135
|
6 |
Moisseytsev A, Sienicki J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor [J]. Nucl. Eng. Des., 2009, 239: 1362
|
7 |
Iverson B D, Conboy T M, Pasch J J, et al. Supercritical CO2 Brayton cycles for solar-thermal energy [J]. Appl. Energ., 2013, 111: 957
|
8 |
Liang Z Y, Gui Y, Zhao Q X. High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition [J]. J. Xi'an Jiaotong Univ., 2019, 53(7): 23
|
8 |
梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究 [J]. 西安交通大学学报, 2019, 53(7): 23
|
9 |
Nie M, Yu Z S, Zhou R C. Investigation of microstructure evolution law of 2.25Cr-1.6W (T23) ferrite steel [J]. Press. Vess. Technol., 2011, 28(6): 1
|
9 |
聂铭, 于在松, 周荣灿. 2.25Cr-1.6W (T23) 铁素体耐热钢服役过程中的组织演变研究 [J]. 压力容器, 2011, 28(6): 1
|
10 |
Rouillard F, Moine G, Martinelli L, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature I: mechanism of void-induced duplex oxide formation [J]. Oxid. Met., 2012, 77: 27
|
11 |
Rouillard F, Moine G, Tabarant M, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature II: mechanism of carburization [J]. Oxid. Met., 2012, 77: 57
|
12 |
Rouillard F, Martinelli L. Corrosion of 9Cr steel in CO2 at intermediate temperature III: modelling and simulation of void-induced duplex oxide growth [J]. Oxid. Met., 2012, 77: 71
|
13 |
Furukawa T, Rouillard F. Oxidation and carburizing of FBR structural materials in carbon dioxide [J]. Prog. Nucl. Energy, 2015, 82: 136
|
14 |
Martinelli L, Desgranges C, Rouillard F, et al. Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 ℃: Detailed analysis of the inner oxide layer [J]. Corros. Sci., 2015, 100: 253
|
15 |
Zhu Z L, Cheng Y, Xiao B, et al. Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide [J]. Energy, 2019, 175: 1075
|
16 |
Oleksak R P, Tylczak J H, Carney C S, et al. High-temperature oxidation of commercial alloys in supercritical CO2 and related power cycle environments [J]. JOM, 2018, 70: 1527
|
17 |
Rouillard F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2 [J]. Corros. Sci., 2016, 105: 120
|
18 |
Birks N, Meier G H, Pettit F S, translated by Xin L, Wang W. Introduction to the High-Temperature Oxidation of Metals [M]. Beijing: Higher Education Press, 2010: 20
|
18 |
Birks N, Meier G H, Pettit F S著, 辛丽, 王文译. 金属高温氧化导论 [M]. 北京: 高等教育出版社, 2010: 20
|
19 |
Brittan A, Mahaffey J, Anderson M. Corrosion and mechanical performance of grade 92 ferritic-martensitic steel after exposure to supercritical carbon dioxide [J]. Metall. Mater. Trans., 2020, 51A: 2564
|
20 |
Hsueh C H, Evans A G. Oxidation induced stresses and some effects on the behavior of oxide films [J]. J. Appl. Phys., 1983, 54: 6672
|
21 |
Evans H E, Lobb R C. Conditions for the initiation of oxide-scale cracking and spallation [J]. Corros. Sci., 1984, 24: 209
|
22 |
Osgerby S, Fry T. Simulating steam oxidation of high temperature plant under laboratory conditions: practice and interpretation of data [J]. Mater. Res., 2004, 7: 141
|
23 |
Zhu Z L, Xu H, Jiang D F, et al. The role of dissolved oxygen in supercritical water in the oxidation of ferritic–martensitic steel [J]. J. Supercrit. Fluid., 2016, 108: 56
|
24 |
Wright I G, Dooley R B. Steam-side scale morphologies associated with scale exfoliation from ferritic steel T22 [J]. Mater. High Temp., 2013, 30: 168
|
25 |
Zhong X Y, Wu X Q, Han E H. The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant [J]. J. Supercrit. Fluid., 2012, 72: 68
|
26 |
Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
|
27 |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
|
28 |
Rouillard F, Charton F, Moine G. Corrosion behavior of different metallic materials in supercritical carbon dioxide at 550 ℃ and 250 bars [J]. Corrosion-us, 2011, 67: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|