Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 241-247    DOI: 10.11902/1005.4537.2020.217
  研究报告 本期目录 | 过刊浏览 |
铜铝层状复合板中性盐雾腐蚀行为研究
张艺凡, 袁晓光, 黄宏军, 左晓姣(), 程禹霖
沈阳工业大学材料科学与工程学院 沈阳 110870
Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment
ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao(), CHENG Yulin
Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(4908 KB)   HTML
摘要: 

采取模拟大气环境的室内中性盐雾腐蚀实验,探讨了铜铝层状复合材料的腐蚀行为。通过扫描电镜 (SEM) 观察腐蚀后铜铝界面形貌,结合X射线衍射仪 (XRD) 和能谱仪 (EDS) 分析腐蚀产物成分,并通过电化学检测分析试样经过不同时间盐雾腐蚀后的表面腐蚀状态,探讨铜铝复合板在服役环境下的腐蚀机制。结果表明:铜铝复合板在盐雾环境下铜铝构成腐蚀原电池,Al为阳极铜为阴极,阴阳极面积比越大,腐蚀速率越大。随着腐蚀的不断进行,铜铝界面的Cu一侧发生腐蚀,且靠近界面的位置腐蚀最为严重,随着腐蚀时间延长,铝基体出现严重的剥蚀现象,Cu几乎无变化。腐蚀产物成分为Al2O3,Al(OH)3和AlO(OH),电化学结果显示:铜铝复合板在腐蚀的过程中,腐蚀速率呈现先增加后减小再增加的趋势。

关键词 铜铝层状复合板盐雾腐蚀电化学失重腐蚀产物    
Abstract

The corrosion behavior of Cu-Al laminated boards was investigated by means of indoor neutral salt spray test, aiming to simulate the atmospheric environment induced corrosion, and electrochemical workstation, as well as scanning electron microscopy (SEM) with energy spectrometer (EDS), and X-ray diffractometer (XRD). The results show that Cu- and Al-laminates act as corrosion galvanic couple in salt spray environment, where the Cu plays as cathode, while Al as anode. The greater the area ratio of cathode to anode, the greater the corrosion rate. As the corrosion continued, the corrosion mainly occurred on the Al plate , and the corrosion was the most serious near the interface of the Cu-Al plates, serious denudation corrosion may appear on the Al-plate for long-term corrosion, while the Cu plate has almost no change. The corrosion products composed mainly of Al2O3, Al(OH)3 and AlO(OH). The electrochemical results show that during the corrosion process, the corrosion rate of Cu-Al composite laminated board increased firstly, then decreased and finally increased again.

Key wordscopper-aluminum laminated plate    salt fog corrosion    electrochemical    mass loss    corrosion product
收稿日期: 2020-10-29     
ZTFLH:  TG174  
基金资助:国家自然基金科学(U1604251);辽宁省博士启动基;金(2019-BS-178)
通讯作者: 左晓姣     E-mail: kz_candy@163.com
Corresponding author: ZUO Xiaojiao     E-mail: kz_candy@163.com
作者简介: 张艺凡,女,1994年生,博士生

引用本文:

张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
Yifan ZHANG, Xiaoguang YUAN, Hongjun HUANG, Xiaojiao ZUO, Yulin CHENG. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 241-247.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.217      或      https://www.jcscp.org/CN/Y2021/V41/I2/241

图1  铜铝复合板结构图
图2  不同阴阳极面积比的铜铝复合板极化曲线
Area ratio of cathode to anodeIcorr / μA·cm-2Ecorr / mV
0.1836.8-1116.533
0.1619.2-1083.167
Pure Al1.852-891.478
表1  极化曲线拟合数据
图3  不同阴阳极面积比的铜铝复合板电化学阻抗谱
图4  电化学阻抗等效电路图
Area ratio of cathode to anodeRsΩ·cm2

CPEb

Yb / Ω-1·cm-2·sn

RbΩ·cm2

CPEdl

Ydl / Ω-1·cm-2·sn

RctΩ·cm2
0.183.4------2.4×10-4219
0.168.3------2.6×10-41421
Pure Al3.23.0×10-675981.3×10-63595
表2  电化学阻抗等效电路拟合数据
图5  盐雾腐蚀不同时间后的铜铝复合板极化曲线
Time / hIcorr / μA·cm-2Ecorr / mV
05.892-1234.296
2412.851-1011.850
1446.723-1056.214
24042.032-1130.48
表3  极化曲线拟合数据
图6  盐雾腐蚀不同时间后的铜铝复合板电化学阻抗谱
Time / hRs / Ω·cm2CPEdl / Ydl / Ω-1·cm-2·snRct / Ω·cm2
08.24.8×10-51.0×104
247.31.7×10-41.9×103
14431.11.0×10-57.6×103
24030.82.7×10-53.0×103
表4  电化学阻抗等效电路拟合数据
图7  不同盐雾腐蚀时间铜铝复合板界面形貌图
图8  腐蚀产物的XRD谱及EDS分析
图9  盐雾环境下的腐蚀动力学曲线
图10  铜铝复合板盐雾腐蚀示意图
1 Zhang J Y, Yao J J, Zeng X Y, et al. Research progress of copper cladding aluminum composites [J]. Chin. J. Nonferrous Met., 2014, 24: 1275
1 张建宇, 姚金金, 曾祥勇等. 铜包铝复合材料研究进展 [J]. 中国有色金属学报, 2014, 24: 1275
2 Liu T, Wang Q D, Sui Y D, et al. An investigation into interface formation and mechanical properties of aluminum-copper bimetal by squeeze casting [J]. Mater. Des., 2016, 89: 1137
3 Yang B, Xu G L, Yao Y F, et al. Intermediate annealing of copper cladding aluminum strip for HF cable [J]. Spec. Cast. Nonferrous Alloys, 2010, 30(1): 78
3 杨斌, 徐高磊, 姚幼甫等. 同轴电缆用铜铝复合带中间退火工艺的研究 [J]. 特种铸造及有色合金, 2010, 30(1): 78
4 Huang G J, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
4 黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46
5 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
5 王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416
6 Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
6 杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263
7 Ma T, Wang Z Y, Han W. A review of atmospheric corrosion of aluminum and aluminum alloys [J]. Corros. Sci. Prot. Technol., 2004, 16: 155
7 马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀 [J]. 腐蚀科学与防护技术, 2004, 16: 155
8 Zhang X, Leygraf C, Wallinder I O. Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments [J]. Corros. Sci., 2013, 73: 62
9 Cui Z Y, Li X G, Xiao K, et al. Exfoliation corrosion behavior of 2B06 aluminum alloy in a tropical marine atmosphere [J]. J. Mater. Eng. Perform., 2015, 24: 296
10 Ouyang J H, Yarrapareddy E, Kovacevic R. Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper [J]. J. Mater. Process. Technol., 2006, 172: 110
11 Zadpoor A A, Sinke J, Benedictus R. Finite element modeling and failure prediction of friction stir welded blanks [J]. Mater. Des., 2009, 30: 1423
12 Chen C Y, Chen H L, Huang W S. Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum/copper bimetal plate [J]. Mater. Trans., 2006, 47: 1232
13 Feng L C, Yin Z Z, Liu Y, et al. Study on mechanical properties and electrochemical corrosion behavior of Cu-Al induction brazing joint [A]. No.19 China Welding Conference [C]. Tianjin, 2014
13 冯立臣, 殷祚炷, 刘洋等. 铜-铝感应钎焊接头力学性能及电化学腐蚀行为研究 [A]. 第十九次全国焊接学术会议 [C]. 天津, 2014
14 Yin Z Z, Sun F L. Corrosion mechanism analysis of copper and aluminum brazed joints [J]. Trans. China Weld. Inst., 2017, 38(10): 121
14 殷祚炷, 孙凤莲. 铜铝钎焊接头腐蚀机理分析 [J]. 焊接学报, 2017, 38(10): 121
15 Zhao Y, Lin C J, Li Y, et al. Electrochemical corrosion behavior of copper clad laminate in NaCl solution [J]. Acta Phys. Chim. Sin., 2007, 23: 1342
15 赵岩, 林昌健, 李彦等. 覆铜板在NaCl溶液中的腐蚀电化学行为 [J]. 物理化学学报, 2007, 23: 1342
16 Chen G H, Min L, Wang J Q. Corrosion and fracture analysis on the copper-aluminum clamp in 220 kV substation [J]. Anhui Electr. Power, 2010, 27(4): 1
16 陈国宏, 闵良, 王家庆. 220 kV变电站铜铝过渡线夹腐蚀与断裂分析 [J]. 安徽电力, 2010, 27(4): 1
17 Davoodi A, Pan J, Leygraf C, et al. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM [J]. Appl. Surf. Sci., 2006, 252: 5499
18 Davoodi A, Pan J, Leygraf C, et al. In situ investigation of localized corrosion of aluminum alloys in chloride solution using integrated EC-AFM/SECM techniques [J]. Electrochem. Solid-State Lett., 2005, 8(6): B21
19 Zhang H Y, Yan H P, Cao J Y, et al. Research on corrosion behavior of AA5083 aluminum alloys in seawater [J]. Mater. Rev., 2015, 29(22): 105
19 张海永, 闫海鹏, 曹京宜等. AA5083铝合金在海水中的腐蚀行为研究 [J]. 材料导报, 2015, 29(22): 105
20 Han X M, Wang S G, Huang Y. Study on corrosion resistance of Titanium-Steel composite plates with explosive welding [J]. Corros. Prot. Petrochem. Ind., 2016, 33(2): 14
20 韩小敏, 王少刚, 黄燕. 钛-钢爆炸复合板的耐腐蚀性能研究 [J]. 石油化工腐蚀与护, 2016, 33(2): 14
21 Xia H B, Wang S G, Ben H F. Investigation on corrosion resistance of titanium-aluminum composite plate of explosive welding [J]. Corros. Prot. Petrochem. Ind., 2014, 31(1): 6
21 夏鸿博, 王少刚, 贲海峰. 钛/铝爆炸复合板的耐腐蚀性能研究 [J]. 石油化工腐蚀与防护, 2014, 31(1): 6
22 Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
[1] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[3] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[4] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[5] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[6] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[7] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[8] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[9] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[10] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[11] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[12] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[13] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[14] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[15] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.