Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 209-218    DOI: 10.11902/1005.4537.2021.008
  研究报告 本期目录 | 过刊浏览 |
淡水舱涂层在不同水环境中的失效行为研究
曹京宜1, 杨延格2(), 方志刚1, 寿海明3, 李亮1, 冯亚菲1, 王兴奇2, 褚广哲1, 赵伊1
1.中国人民解放军92228部队 北京 100072
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.中国人民解放军92942部队 北京 100161
Failure Behavior of Fresh Water Tank Coating in Different Water
CAO Jingyi1, YANG Yange2(), FANG Zhigang1, SHOU Haiming3, LI Liang1, FENG Yafei1, WANG Xingqi2, CHU Guangzhe1, ZHAO Yi1
1.Unit 92228, People's Liberation Army, Beijing 100072, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Unit 92942, People's Liberation Army, Beijing 100161, China
全文: PDF(14441 KB)   HTML
摘要: 

利用附着力测试、吸水率测试和电化学阻抗谱测试等手段,研究了淡水舱涂层在反渗透水、调质水、自来水等淡水以及盐水中的腐蚀失效行为。结果表明,自来水比盐水具有更快的渗透速度,导致涂层在淡水中会优先失效。淡水舱涂层在反渗透水、调质水和饮用水3种淡水中的腐蚀失效历程相同,根据电化学阻抗谱的变化特征可分为3个阶段:水的快速渗透、涂层/金属界面金属基体的腐蚀和涂层中颜填料对金属的缓蚀。

关键词 涂层淡水腐蚀电化学阻抗谱    
Abstract

Failure behavior of epoxy coating used for fresh water tank, namely epoxy coating/Q235 carbon steel, in different media including three different fresh water and one kind of salt water was investigated by means of adhesion test, water absorption test and electrochemical impedance spectroscopy. Failure of the epoxy coating in fresh water was earlier than that in salt water owing to the faster penetration rate. The failure process of the epoxy coating in fresh waters, including reverse osmosis water, conditioning water and drinking water was similar, and can be differentiated as the following three stages: the quick penetration of water, corrosion of the substrate at the interface of coating/steel and the corrosion inhibition of pigments in the coating.

Key wordscoating    fresh water    corrosion    electrochemical impedance spectroscopy
收稿日期: 2021-01-13     
ZTFLH:  TG174  
通讯作者: 杨延格     E-mail: ygyang@imr.ac.cn
Corresponding author: YANG Yange     E-mail: ygyang@imr.ac.cn
作者简介: 曹京宜,女,1972年生,研究员

引用本文:

曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
Jingyi CAO, Yange YANG, Zhigang FANG, Haiming SHOU, Liang LI, Yafei FENG, Xingqi WANG, Guangzhe CHU, Yi ZHAO. Failure Behavior of Fresh Water Tank Coating in Different Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 209-218.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.008      或      https://www.jcscp.org/CN/Y2021/V41/I2/209

SamplepHTDS / mg·L-1Turbidity NTUBicarbonate / mg·L-1Hardness (CaCO3) / mg·L-1Ca2+ / mg·L-1Mg2+ / mg·L-1
ROW7.725.650.15------------
CW6.62103.20.2587.8485.7021.807.49
表1  两种淡水的性质
图1  淡水舱涂层在盐水和饮用水中湿态附着力随时间的变化
图2  盐水和饮用水浸泡环境下拉拔测试后淡水舱涂层典型的宏观形貌
图3  淡水舱涂层在盐水和饮用水中的水传输动力学曲线
图4  淡水舱涂层在盐水和饮用水开路电位随时间的变化
图5  淡水舱涂层在盐水中浸泡不同时间的电化学阻抗谱
图6  淡水舱涂层在饮用水中浸泡不同时间的电化学阻抗谱
图7  淡水舱涂层在盐水和饮用水中电化学阻抗谱低频模值随时间的变化
图8  淡水舱涂层在不同淡水中附着力随浸泡时间的变化
图9  淡水舱涂层在反渗透水和调制水中浸泡不同时间附着力测试后的宏观形貌
图10  淡水舱涂层在3种不同淡水环境的水传输动力学曲线
图11  淡水舱涂层在3种淡水环境中开路电位随浸泡时间的变化
图12  淡水舱涂层在反渗透水中浸泡不同时间的电化学阻抗谱
图13  淡水舱涂层在调质水中浸泡不同时间的电化学阻抗谱
图14  淡水舱涂层腐蚀失效过程中低频阻抗模值随时间的的变化
1 Dong Y H, Zhou Q. Relationship between ion transport and the failure behavior of epoxy resin coatings [J]. Corros. Sci., 2014, 78: 22
2 Posner R, Marazita M, Amthor S, et al. Influence of interface chemistry and network density on interfacial ion transport kinetics for styrene/acrylate copolymer coated zinc and iron substrates [J]. Corros. Sci., 2010, 52: 754
3 Bi H C, Sykes J. Cathodic delamination of unpigmented and pigmented epoxy coatings from mild steel [J]. Prog. Org. Coat., 2016, 90: 114
4 Sørensen P A, Dam-Johansen K, Weinell C E, et al. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces [J]. Prog. Org. Coat., 2010, 67: 107
5 Khun N W, Frankel G S. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples [J]. Corros. Sci., 2013, 67: 152
6 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
6 师超, 邵亚薇, 熊义等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
7 Liu X L, Shao Y W, Zhang Y J, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating-I. High-temperature ball milling treatment [J]. Corros. Sci., 2015, 90: 451
8 Liu X L, Shao Y W, Zhang Y J, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating-II. Effect of grinding temperature [J]. Corros. Sci., 2015, 90: 463
9 Deyab M A, Ouarsal R, Al-Sabagh A M, et al. Enhancement of corrosion protection performance of epoxy coating by introducing new hydrogenphosphate compound [J]. Prog. Org. Coat., 2017, 107: 37
10 Montazeri S, Ranjbar Z, Rastegar S. A study on effects of viscoelastic properties on protective performance of epoxy coatings using EIS [J]. Surf. Coat. Technol., 2017, 111: 248
11 Creus J, Mazille H, Idrissi H. Porosity evaluation of protective coatings onto steel, through electrochemical techniques [J]. Surf. Coat. Technol., 2000, 130: 224
12 Upadhyay V, Battocchi D. Localized electrochemical characterization of organic coatings: A brief review [J]. Prog. Org. Coat., 2016, 99: 365
13 Posner R, Wapner K, Amthor S, et al. Electrochemical investigation of the coating/substrate interface stability for styrene/acrylate copolymer films applied on iron [J]. Corros. Sci., 2010, 52: 37
14 Nazarov A, Le Bozec N, Thierry D. Assessment of steel corrosion and deadhesion of epoxy barrier paint by scanning Kelvin probe [J]. Prog. Org. Coat., 2018, 114: 123
15 Cambier S M, Posner R, Frankel G S. Coating and interface degradation of coated steel, Part 1: Field exposure [J]. Electrochim. Acta, 2014, 13: 30
16 Cambier S M, Frankel G S. Coating and interface degradation of coated steel, Part 2: accelerated laboratory tests [J]. Electrochim. Acta, 2014, 136: 442
17 Shi Y, Fang Q, Guo C Q, et al. Preparation of environmentally friendly ship fresh water tank coatings and study on its properties [J]. China Coat., 2016, 31(10): 29
17 石勇, 方倩, 郭常青等. 环境友好型长寿命淡水舱涂料的制备及性能研究 [J]. 中国涂料, 2016, 31(10): 29
[1] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[2] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[3] 安亮, 高昌琦, 贾建刚, 马勤. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[4] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[5] 刘骁飞, 王春雨, 周俊锋, 金浩哲, 王超. 胺液脱除CO2系统空冷器腐蚀规律研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
[6] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[7] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[8] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[9] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[10] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[11] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[12] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[13] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[14] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[15] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.