Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 545-552    DOI: 10.11902/1005.4537.2019.215
  研究报告 本期目录 | 过刊浏览 |
含铜钢在1150 ℃高温保温条件下的铜偏聚现象
王雷1(), 董俊华2, 韩达3, 梁坚坤1, 李权1, 柯伟4
1.凯里学院大健康学院 凯里 556011
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.北京理工大学生命科学学院 北京 100000
4.中国科学院金属研究所 材料环境腐蚀中心 沈阳 110016
Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃
WANG Lei1(), DONG Junhua2, HAN Da3, LIANG Jiankun1, LI Quan1, KE Wei4
1. School of Life and Health Science, Kaili University, Kaili 556011, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Life Science, Beijing Institute of Technology, Beijing 100000, China
4. Environmental Corrosion Centre of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(13837 KB)   HTML
摘要: 

研究了在1150 ℃高温条件下保温处理后含铜钢的铜偏聚现象。在空气中采用不同保温时间进行实验,保温时间不超过60 min。结果表明,由于Fe的氧化及脱碳引起的渗碳体转变数量的减少,共同促使更多的Cu析出并向钢/氧化皮界面附近晶界偏聚,导致在空气中经高温处理后,钢/氧化皮界面及其附近的晶界中都出现了Cu的富集;经过冷却相转变后,钢/氧化皮界面附近区域钢中的Cu含量低于高温处理前的Cu含量。

关键词 含铜钢高温处理铜偏聚脱碳    
Abstract

The Cu segregation in Cu-containing steel was investigated after high temperature treatment at 1150 ℃ in air for different time. It is found that Cu segregation occurred both at the interface oxide scale/steel matrix and at grain boundaries of the sub-surface of the substrate beneath the interface, which was caused by the preferential oxidation of Fe and the decarburization, thereby resulted in the sharply decrease of the cementite content near the steel surface. It also found that the Cu content in the area beneath the interface oxide scale/steel matrix for the heat treated steel is lower than that of the steel before subjecting to heat treatment.

Key wordsCu-containing steel    high temperature treatment    Cu segregation    decarburization
收稿日期: 2019-11-17     
ZTFLH:  TG142  
基金资助:凯里学院博士启动项目(BS201814);国家自然科学基金(31760191);贵州省高等学校教学内容和课程体系改革项目(JG202018);贵州省高等学校教学内容和课程体系改革项目(2018520134)
通讯作者: 王雷     E-mail: 2015163582@qq.com
Corresponding author: WANG Lei     E-mail: 2015163582@qq.com
作者简介: 王雷,男,1970年生,博士

引用本文:

王雷, 董俊华, 韩达, 梁坚坤, 李权, 柯伟. 含铜钢在1150 ℃高温保温条件下的铜偏聚现象[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
Lei WANG, Junhua DONG, Da HAN, Jiankun LIANG, Quan LI, Wei KE. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 545-552.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.215      或      https://www.jcscp.org/CN/Y2020/V40/I6/545

图1  含铜钢光学显微组织
图2  在1150 ℃空气中不同保温时间高温处理后钢/氧化皮界面区域光学显微组织
图3  含铜钢在1150 ℃还原气氛中不同时间处理后表层组织的光学显微照片
图4  在1150 ℃下空气中保温20 min后试样钢/氧化皮界面区域的背散射电子图像及O,Fe,Cu,Si,P,Mn和S的分布图
图5  在1150 ℃还原气氛中保温20 min高温处理后试样钢/氧化皮界面区域的背散射电子图像及O,Fe,Cu,Si,P,Mn和S的分布图
图6  空气中高温下热轧后试样表面热裂区钢/氧化皮界面附近EDX线扫描结果
图7  含铜钢珠光体和铁素体中铜含量EPMA检测结果
图8  在空气中高温处理前后钢/氧化皮界面附近脱碳及Fe氧化造成的Cu偏聚
[1] Speller F N. Corrosion, Causes and Prevention [M]. 3rd Ed. New York: McGraw-Hill Book Co., 1951: 106
[2] Dong J H. Rusting evolution of Mn-Cu alloying steel in a simulated coastal environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 261
[2] (董俊华. Mn-Cu低合金钢在模拟海岸大气条件下的锈蚀演化规律 [J]. 腐蚀科学与防护技术, 2010, 22: 261)
[3] Townsend H E. Effects of alloying elements on the corrosion of steel in industrial atmospheres [J]. Corrosion, 2001, 57: 497
[4] Liu G C, Dong J H, Han E-H, et al. Influence of Cu and Mn on corrosion behavior of low alloy steel in a simulated coastal environment [J]. Corros. Sci. Prot. Technol., 2008, 20: 235
[4] (刘国超, 董俊华, 韩恩厚等. Cu、Mn的协同作用对低合金钢在模拟海洋大气环境中腐蚀的影响 [J]. 腐蚀科学与防护技术, 2008, 20: 235)
[5] Russell K C, Brown L M. A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system [J]. Acta Metall., 1972, 20: 969
[6] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
[6] (柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365)
[7] Hao X H, Dong J H, Wei J, et al. Influence of microstructure of AH32 corrosion resistant steel on corrosion behavior [J]. Acta Metall. Sin., 2012, 48: 534
[7] (郝雪卉, 董俊华, 魏洁等. AH32耐蚀钢显微组织对其腐蚀行为的影响 [J]. 金属学报, 2012, 48: 534)
[8] Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
[9] Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
[10] Shao W R, Wang Y L, Chen N J, et al. Effect of Cu segregation on crack in CSP hot rolled strip [J]. J. Chin. Electr. Microsc. Soc., 2002, 21: 731
[10] (邵伟然, 王元立, 陈南京等. CSP工艺热轧钢带中Cu的偏聚对裂纹的影响 [J]. 电子显微学报, 2002, 21: 731)
[11] LeMay I, Schetky L M. Copper in Iron and Steel [M]. New York: John Wiley & Sons, 1982: 45
[12] Li Y, Song B, Mao J H, et al. Copper precipitation behavior in Cu-Fe alloys [J]. J. Univ. Sci. Technol. Beijing., 2009, 31: 579
[12] (李岩, 宋波, 毛璟红等. Fe-Cu合金体系中Cu析出规律 [J]. 北京科技大学学报, 2009, 31: 579)
[13] Salter W J M. Effects of alloying elements on solubility and surface energy of copper in mild steel [J]. J. Iron Steel Inst., 1966, 204: 478
[14] Hydrean P P, Kitchin A L, Schaller F W. Hot rolling and heat treatment of Ni-Cu-Cb (Nb) steel [J]. Metall. Trans., 1971, 2: 2541
[15] Nicholson A, Murray J D. Surface hot shortness in low-carbon steel [J]. J. Iron Steel Inst., 1965, 203: 1007
[16] Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
[17] Suzuki H G. Strain rate dependence of Cu embrittlement in steels [J]. ISIJ Int., 1997, 37: 250
doi: 10.2355/isijinternational.37.250
[18] Fisher G L. The effect of nickel on the high-temperature oxidation characteristics of copper-bearing steels [J]. J. Iron Steel Inst., 1969, 207: 1010
[19] Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
[20] Wang L, Zhang S X, Dong J H, et al. Surface crazing of Mn-Cu weathering steel [J]. Acta Metall. Sin., 2010, 46: 723
doi: 10.3724/SP.J.1037.2009.00501
[20] (王雷, 张思勋, 董俊华等. Mn-Cu耐候钢的表面龟裂 [J]. 金属学报, 2010, 46: 723)
doi: 10.3724/SP.J.1037.2009.00501
[21] Dong J H, Chen X H, Han E-H, et al. Synergistic effect of copper and manganese on resistant to atmospheric corrosion for low-alloying steel [A]. 16th International Corrosion Congress [C]. Beijing, 2005: 1
[22] Kajitani T, Wakoh M, Tokumitsu N, et al. Influence of heating temperature and strain on surface crack in carbon steel induced by residual copper [J]. Tetsu-to-Hagané, 1995, 81: 185
doi: 10.2355/tetsutohagane1955.81.3_185
[23] Seo S J, Asakura K, Shibata K. Evaluation of susceptibility to surface hot shortness in Cu-containing steels by tensile test [J]. ISIJ Int., 1997, 37: 232
doi: 10.2355/isijinternational.37.232
[24] Chen X H, Dong J H, Han E-H, et al. Effect of Cu on microstructures of manganese steel by EDXA and SEM [J]. J. Mater. Sci. Technol., 2007, 23(3): 307
doi: 10.1179/174328407X158640
[25] Khalid F A, Edmonds D V. On the properties and structure of micro-alloyed and copper-bearing hot-rolled steels [J]. J. Mater. Proc. Technol., 1997, 72: 434
doi: 10.1016/S0924-0136(97)00207-0
[1] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[2] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[3] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[4] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[5] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[6] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[7] 赵阳, 梁平, 史艳华, 张云霞. 环境因素对X100钢表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[8] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[9] 赵阳, 梁平, 史艳华, 王秉新, 刘峰, 武占文. NaHCO3溶液中X100和X80管线钢钝化膜性能比较[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[10] 赵阳 梁平 史艳华 王秉新 刘峰 陈吉. X100和X80管线钢在NaHCO3溶液中表面钝化膜性能比较?[J]. 中国腐蚀与防护学报, 0, 0(0): 0-0.
[11] 曾洪涛,向 嵩,刘松林 何勇刚. 904L不锈钢在氢氟酸和浓硫酸混合液中的
腐蚀行为
[J]. 中国腐蚀与防护学报, 2013, 33(3): 182-187.
[12] 曾洪涛 向嵩 刘松林 何勇刚. 904L在氢氟酸和浓硫酸混合液中的腐蚀行为[J]. 中国腐蚀与防护学报, 0, 0(0): 0-0.
[13] 郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[14] 江克,陈学东,杨铁成,张玮,梁春雷. 典型奥氏体不锈钢高温环烷酸腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
[15] 张胜寒,连佳,檀玉. 304L不锈钢在两种高温高压水溶液中形成的钝化膜半导体性质研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 483-487.