Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 508-516    DOI: 10.11902/1005.4537.2019.180
  研究报告 本期目录 | 过刊浏览 |
深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究
孙海静(), 覃明, 李琳
沈阳理工大学环境与化学工程学院 沈阳 110159
Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment
SUN Haijing(), QIN Ming, LI Lin
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(13139 KB)   HTML
摘要: 

对浅海中大量使用的Al-Zn-In-Mg-Ti牺牲阳极在深海低溶解氧环境下的性能进行了研究。通过恒电流法对Al-Zn-In-Mg-Ti牺牲阳极开路电位、工作电位、实际电容量、电流效率及溶解形貌等使役性能进行研究,并结合浸泡失重、动电位极化曲线、电化学阻抗谱、循环伏安等电化学方法以及SEM/EDS分析手段,探讨浅海现役Al-Zn-In-Mg-Ti牺牲阳极在深海低溶解氧环境下的电化学性能。结果表明:深海低溶解氧条件下,Al-Zn-In-Mg-Ti溶解速度减缓,活性元素的再沉积过程受到抑制,活化作用减弱,从而导致铝阳极表面氧化膜不易溶解,大量附着,造成其活化困难,放电性能下降,电流效率降低,阴极保护设计时需留出相应设计裕量。

关键词 深海环境低溶解氧牺牲阳极电化学性能    
Abstract

The performance of the Al-Zn-In-Mg-Ti sacrificial anode, which is usually used in shallow sea area, was studied in a simulated deep-sea water of low dissolved oxygen via weight loss measurement, galvanostatic method, potentiodynamic polarization curves, electrochemical impedance spectroscopy and cyclic voltammograms test and scanning electron microscope (SEM/EDS), in terms of the open circuit potential, work potential, actual electric capacity, electric current efficiency and corrosion morphology of the Al-Zn-In-Mg-Ti sacrificial anode. It was found that, the dissolution rate of the Al-Zn-In-Mg-Ti sacrificial anode decreased in the simulated seawater of a low dissolved oxygen. The re-deposition process of the active elements was suppressed and the oxide scale on the anode surface was hard to be dissolved. Correspondingly, both the discharge performance and the current efficiency decrease, therefore a corresponding design margin should be set aside in the design course of cathodic protection.

Key wordsdeep water environment    low dissolved oxygen    sacrificial anode    electrochemical performance
收稿日期: 2019-10-15     
ZTFLH:  TG174  
基金资助:辽宁省博士启动基金(201601181);辽宁省教育厅科学研究一般项目(L2015464);辽宁省教育厅青年科技人才“育苗”项目(LG201928)
通讯作者: 孙海静     E-mail: hjsun@alum.imr.ac.cn
Corresponding author: SUN Haijing     E-mail: hjsun@alum.imr.ac.cn
作者简介: 孙海静,女,1985年生,博士,副教授

引用本文:

孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
Haijing SUN, Ming QIN, Lin LI. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 508-516.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.180      或      https://www.jcscp.org/CN/Y2020/V40/I6/508

图1  Al-Zn-In-Mg-Ti牺牲阳极在两种溶解氧条件下的开路电位随时间的变化
图2  Al-Zn-In-Mg-Ti牺牲阳极在两种溶解氧条件下工作电位随时间的变化
EnvironmentQ / A·h·kg-1η / %
SDO2558.4889.27
LDO2432.5284.87
表1  Al-Zn-In-Mg-Ti牺牲阳极在两种溶解氧含量下的电化学性能
图3  Al-Zn-In-Mg-Ti牺牲阳极在两种溶解氧条件下恒电流实验后宏观腐蚀形貌
图4  Al-Zn-In-Mg-Ti牺牲阳极在两种溶解氧条件下恒电流实验除锈后微观腐蚀形貌
EnvironmentMass loss / g·m-2Corrosion rate / g·m-2·d-1
SDO3.07440.4392
LDO1.71360.2448
表2  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下浸泡168 h后的腐蚀失重测试结果
图5  Al-Zn-In-Mg-Ti合金在两种溶解氧含量下动电位极化曲线
图6  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下循环伏安曲线
图7  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下的Nyquist谱
图8  EIS数据对应的等效电路图
EnvironmentRs / Ω·cm2Qdl / μF·cm-2n1 (0<n<1)Rt / Ω·cm2L / H·cm2R1 / Ω·cm2χ2
SDO11.916.117× 10-60.97986324894.549172.311×10-2
LDO7.6551.07× 10-50.941512510------3.591×10-3
表3  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下EIS数据的拟合结果
图9  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下浸泡168 h后宏观腐蚀形貌
图10  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下浸泡168 h后微观腐蚀形貌
图11  Al-Zn-In-Mg-Ti合金在两种溶解氧条件下浸泡168 h后表面EDS结果
[1] Schumacher M. Sea Water Corrosion Handbook [M]. New Jersey: Noye Data, 1979
[2] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
doi: 10.1016/j.oceaneng.2014.05.003
[3] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
[3] (周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47)
[4] Tang J W, Shao Y W, Zhang T, et al. Effect of cyclic pressure on degradation behavior of epoxy coating in simulated deep ocean environment [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 275
[4] (唐俊文, 邵亚薇, 张涛等. 循环压力对环氧涂层在模拟深海环境中失效行为的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 275)
[5] Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
[6] Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
[7] Rhee K Y, Lee S M, Park S J. Effect of hydrostatic pressure on the mechanical behavior of seawater-absorbed carbon/epoxy composite [J]. Mater. Sci. Eng., 2004, A384: 308
[8] Idusuyi N, Oluwole O O. Aluminium anode activation research-a review [J]. Int. J. Sci. Technol., 2012, 2: 12
[9] Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
[9] (张万友, 王鑫焱, 郗丽娟等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420)
[10] Sun M X, Ma L, Zhang H B, et al. Research progress in aluminum alloy sacrificial anode materials [J]. Equip. Environ. Eng., 2018, 15(3): 9
[10] (孙明先, 马力, 张海兵等. 铝合金牺牲阳极材料的研究进展 [J]. 装备环境工程, 2018, 15(3): 9)
[11] NACE Standard RP0176-2003, Item No. 21018, Standard Recommended Practice in Corrosion Control of Steel Fixed Offshore Structures Associated with Petroleum Production [S]. Houston, 2003
[12] Det Norske Veritas. DNV-RP-B401 Cathodic Protection Design, Recommended Practice [S]. Norway: Det Norske Veritas, 2005
[13] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
[13] (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[14] Canepa E, Stifanese R, Merotto L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: A review and the KM3NeT test results [J]. Mar. Struct., 2018, 59: 271
doi: 10.1016/j.marstruc.2018.02.006
[15] Tawns A, Oakley R. Cathodic protection at simulated depth of 2500 m [A]. Corrosion 2000 [C]. Orlando, Florida, 2000
[16] Fischer K P, Espelid B, Schei B. A review of CP current demand and anode performance for deep water [A]. Corrosion 2001 [C]. Houston, Texas, 2001
[17] Hu S N. Research on property of Al-Zn-In sacrifical anode under simualte deep sea water [D]. Harbin: Harbin Engineering University, 2012
[17] (胡胜楠. 模拟深海环境下Al-Zn-In牺牲阳极性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012)
[18] Li W L, Yan Y G, Chen G, et al. The effect of temperature and dissolved oxygen concentration on the electrochemical behavior of Al-Zn-Inbased anodes [J]. Proced. Eng., 2011, 12: 27
doi: 10.1016/j.proeng.2011.05.006
[19] Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
doi: 10.1016/j.corsci.2013.07.029
[20] ASTM. ASTM D1141-98 Standard practice for the preparation of substitute ocean water [S]. West Conshohocken, PA: ASTM International, 2008
[21] State Bureau of Quality and Technical Supervision. GB/T17848-1999 Test methods for electrochemical properties of sacrificial anodes [S]. Beijing: China Standard Press, 2000
[21] (国家质量技术监督局. GB/T17848-1999 牺牲阳极电化学性能试验方法 [S]. 北京: 中国标准出版社, 2000)
[22] Hu S X. Handbook of Cathodic Protection Engineering [M]. Beijing: Chemical Industry Press, 1999
[22] (胡士信. 阴极保护工程手册 [M]. 北京: 化学工业出版社, 1999)
[23] Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes [J]. Corrosion, 1984, 40: 366
doi: 10.5006/1.3593939
[24] Ma J L, Wen J B, Li G X, et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534
doi: 10.1016/j.corsci.2009.10.010
[25] Zhao G Q, Wei Y H, Li J. Current efficiency and corrosion mechanism of Al-Zn-In sacrificial anode at different current densities [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 69
[25] (赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究 [J]. 中国腐蚀与防护学报, 2015, 35: 69)
doi: 10.11902/1005.4537.2013.279
[26] Huang Y B, Song G W, Liu X B, et al. Corrosion protection of Al-Zn-In-Mg-Ga-Mn aluminous sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 44
[26] (黄燕滨, 宋高伟, 刘学斌等. Al-Zn-In-Mg-Ga-Mn腐蚀防护行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 44)
[27] Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
[27] (徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186)
[28] Qi G T, Qu J E, Liao H X. Study on the electrochemical performances of segregation phases in alumium anodes containing RE [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 355
[28] (齐公台, 屈钧娥, 廖海星. 含RE铝阳极中析出相的电化学行为研究 [J]. 中国腐蚀与防护学报, 2003, 23: 355)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[3] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[4] 曹攀, 周婷婷, 白秀琴, 袁成清. 深海环境中的材料腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.
[5] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[6] 曹彩红 梁成浩 黄乃宝. 镀铌不锈钢双极板的电化学性能[J]. 中国腐蚀与防护学报, 2013, 33(2): 123-128.
[7] 胡胜楠,张涛,邵亚薇,孟国哲,王福会. 循环静水压力对牺牲阳极阴极保护的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 241-246.
[8] 黄燕滨,宋高伟,刘学斌,丁华东,闫永贵,邵新海. Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.
[9] 侯军才,张秋美. 高电位镁牺牲阳极研究进展[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[10] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[11] 马力,李威力,曾红杰,闫永贵,侯保荣. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[12] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[13] 孔小东;丁振斌;朱梅五. 含Mg铝合金牺牲阳极的电流效率及其影响因素[J]. 中国腐蚀与防护学报, 2010, 30(1): 6-10.
[14] 徐宏妍; 李延斌 . 铝基牺牲阳极在海水中的活化行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 186-192 .
[15] 侯军才; 关绍康; 任晨星; 徐河; 房中学; 赵彦学 . 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170 .