Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 416-424    DOI: 10.11902/1005.4537.2020.002
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为
刘海霞1,2, 黄峰1,2(), 袁玮1,2, 胡骞1,2, 刘静1,2
1 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2 武汉科技大学 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081
Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere
LIU Haixia1,2, HUANG Feng1,2(), YUAN Wei1,2, HU Qian1,2, LIU Jing1,2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(15357 KB)   HTML
摘要: 

通过湿/干循环实验 (在蒸馏水中润湿并在空气中干燥)、场发射扫描电子显微镜 (FE-SEM)、X射线衍射 (XRD)、电子探针 (EPMA) 和其他表面测试技术以及电化学阻抗谱 (EIS),研究了690 MPa高强度贝氏体钢 (简称Q690钢) 在模拟乡村大气中的长期腐蚀行为。结果表明,在整个腐蚀过程中,Q690钢的腐蚀过程可以分为两个阶段,即加速阶段和减速阶段。在腐蚀的早期阶段,以板条贝氏体 (LB) 为主的Q690钢的耐蚀性优于含有铁素体 (F) 和珠光体 (P) 组织的Corten-A钢。在腐蚀后期,Q690钢锈垢中Cr的富集和α-FeOOH的增加增强了锈层的防护性,导致Q690钢的腐蚀速率降低,因此表明Q690钢耐腐蚀性能明显优于Corten-A钢。

关键词 690 MPa级贝氏体钢模拟乡村大气耐蚀性能    
Abstract

The long-term corrosion behavior of 690 MPa high-strength bridge steel (referred as Q690 steel) in a simulated rural atmosphere was investigated via wet/dry cyclic test with wetting in distilled water and drying in air, as well as electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), electron probe (EPMA) and other surface testing techniques. The results indicate that the corrosion process of Q690 steel can be differentiated as two stages during the whole corrosion process, namely the accelerated and the decelerated stages. In the early stage of corrosion, the corrosion resistance of Q690 steel with microstructure of lath bainite (LB) is better than that of Corten-A steel with microstructure of ferrite (F) and pearlite (P). In the later stage of corrosion, the enrichment of Cr element and the increase of α-FeOOH in the rust scale of Q690 steel have enhanced the protectiveness of the rust scale, leading to the decrease of the corrosion rate of Q690 steel, hence which shows significantly better corrosion resistance than the Corten-A steel.

Key words690 MPa grade bainite steel    rural atmosphere    corrosion resistance
收稿日期: 2020-01-06     
ZTFLH:  TG174  
基金资助:国家重点研发计划专项(2017YFB0303800)
通讯作者: 黄峰     E-mail: huangfeng@wust.edu.cn
Corresponding author: HUANG Feng     E-mail: huangfeng@wust.edu.cn
作者简介: 刘海霞,女,1996年生,硕士生

引用本文:

刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
Haixia LIU, Feng HUANG, Wei YUAN, Qian HU, Jing LIU. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 416-424.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.002      或      https://www.jcscp.org/CN/Y2020/V40/I5/416

SampleCSiMnPSCuCrNiFe
Q6900.060.211.760.005<0.0050.3~0.40.4~0.60.1~0.3Balanced
Corten-A0.070.181.180.0170.0080.210.380.15Balanced
Q2350.140.190.310.0150.00240.016------Balanced
表1  3种钢主要化学成分
图1  Q690,Corten-A和Q235 3种钢的显微组织
图2  3种钢平均腐蚀速率随时间变化图
图3  3种钢试样不同周浸时间后的表面宏观形貌
图4  不同周浸时间3种钢腐蚀产物的XRD谱
图5  不同周浸时间3种钢锈层物相衍射图谱半定量分析
图6  腐蚀768 h后Q690钢锈层截面形貌及元素分布图
图7  腐蚀768 h后Corten-A钢锈层截面形貌及元素分布图
图8  腐蚀768 h后Q235钢锈层截面形貌及元素分布图
图9  3种钢腐蚀48、192和768 h后带锈试样阻抗谱
图10  3种钢腐蚀不同时间EIS等效电路模型
SamplesTimehRctΩ·cm2CPEdl10-4 F·cm-2RrustΩ·cm2CPErust10-7 F·cm-2
Q690482013.338.9------
192304820.7663.148.4
76831428.71057.21.6
Corten-A48831.440.9------
192872.121.2255.8296.1
7681789.512.8511.412.7
Q23548609.943.1------
192799.229.5235.2603.5
768932.714.8312.335.6
表2  3种钢腐蚀不同时间后的EIS拟合结果
图11  3种钢腐蚀不同时间后带锈试样线性极化图
图12  3种钢腐蚀不同时间后带锈试样线性极化电阻值
图13  3种钢的腐蚀深度-时间双对数曲线
[1] Cano H, Díaz I, De La Fuente D, et al. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities [J]. Mater. Corros., 2018, 69: 8
[2] Liu X Q, Liu Z L, Hu J D, et al. Influence of Cr content on corrosion behaviour of tube pile steel in half-immersion environment [J]. Trans. Indian Inst. Met., 2018, 71: 209
[3] Li D L, Fu G Q, Zhu M Y, et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere [J]. Int. J. Miner. Metall. Mater., 2018, 25: 325
[4] Gao Y, Huang Y H, Zheng Z J, et al. Atmospheric corrosion behavior of Q235 steel exposed on transmission tower sites of Guangdong province [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(7): 39
[4] (高岩, 黄殷辉, 郑志军等. Q235钢在广东省输电杆塔现场的大气腐蚀行为 [J]. 华南理工大学学报 (自然科学版), 2018, 46(7): 39)
[5] Gu B S, Wang B, Ji X C, et al. Exposure corrosion behavior of economical weathering steel [J]. J. Mater. Prot., 2004, 37(5): 39
[5] (顾宝珊, 汪兵, 纪晓春等. 经济型耐大气腐蚀钢大气曝晒腐蚀性能研究 [J]. 材料保护, 2004, 37(5): 39)
[6] Zhang Y, Liu J, Hunag F, et al. Comparative study of corrosion resistance of three weathering steels for bridges in simulated marine atmospheric environment [J]. J. Wuhan Univ. Sci. Technol., 2018, 41: 401
[6] (张宇, 刘静, 黄峰等. 三种桥梁耐候钢在模拟海洋大气环境中的耐蚀性能比较 [J]. 武汉科技大学学报, 2018, 41: 401)
[7] State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 19746-2005 Corrosion of metals and alloys—Alternate immersion test in salt solution [S]. Beijing: China Standards Press, 2005
[7] (中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19746-2005 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2005)
[8] Ministry of Railways of the people's Republic of China. TB/T 1979-2003 Technical specification for the procurement of atmospheric corrosion resisting steel for railway rolling stock [S]. Beijing: China Railway Press, 2014
[8] (中国人民共和国铁道部. TB/T 1979-2003 铁道车辆用耐大气腐蚀钢订货技术条件 [S]. 北京: 中国铁道出版社, 2014)
[9] Luo R, Wu J, Liu X L, et al. Evolution of rust layers formed on Q235 and 09CuPCrNi-a steels during initial stage of field exposure in two sites of different environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 566
[9] (罗睿, 吴军, 柳鑫龙等. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 [J]. 中国腐蚀与防护学报, 2014, 34: 566)
[10] Wang Z Y, Yu Q C, Chen J J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
[10] (王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 53)
[11] Zhang H X, Qi X, Deng C L, et al. Study on corrosion rust layers of low alloy steel in different simulated seawater environment using raman spectroscopy [J]. Equip. Environ. Eng., 2009, 6(1): 30
[11] (张慧霞, 戚霞, 邓春龙等. 不同腐蚀体系中低合金钢锈层的拉曼光谱研究 [J]. 装备环境工程, 2009, 6(1): 30)
[12] Cao X K, Huang F, Huang C, et al. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection [J]. Corros. Sci., 2019, 159: 108120
[13] Sreekanth D, Rameshbabu N, Venkateswarlu K, et al. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy [J]. Surf. Coat. Technol., 2013, 222: 31
doi: 10.1016/j.surfcoat.2013.01.056
[14] Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
[15] Han W, Wang J, Wang Z Y, et al. Study on atmospheric corrosion of low alloy steels [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 147
[15] (韩薇, 汪俊, 王振尧等. 碳钢与低合金钢耐大气腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2004, 24: 147)
[16] Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
doi: 10.1016/j.corsci.2010.01.022
[17] Hao L, Zhang S X, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere [J]. Corros. Sci., 2012, 58: 175
doi: 10.1016/j.corsci.2012.01.017
[18] Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
[19] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[20] Kamimura T, Hara S, Miyuk H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
[21] Zou Y, Wang J, Zheng Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53: 208
[22] Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel [J]. Mater. Chem. Phys., 2020, 241: 122045
[1] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[2] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[3] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[4] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[5] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[6] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[7] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[8] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[9] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
[10] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[11] 肖正涛,李相波,王佳,黄国胜,周雄. 冷喷涂铬锆铜涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(1): 18-22.
[12] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.
[13] 李肖丰;李全安;陈君;张清;张兴渊. Sn对Mg-6Al-1.2Y-0.9Nd镁合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 101-106.
[14] 唐子龙;刘哲. LY12铝合 金NaOH介质电解着色膜耐蚀性的电化学评价[J]. 中国腐蚀与防护学报, 2010, 30(1): 25-28.
[15] 李海祥;李相波;孙明先;王洪仁;黄国胜. 冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2010, 30(1): 62-66.