Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 381-388    DOI: 10.11902/1005.4537.2019.175
  研究报告 本期目录 | 过刊浏览 |
干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究
闻洋1(), 熊林1, 陈伟1, 薛刚1, 宋文学2
1.内蒙古科技大学土木工程学院 包头 014010
2.包头市公路工程股份有限公司 包头 014010
Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions
WEN Yang1(), XIONG Lin1, CHEN Wei1, XUE Gang1, SONG Wenxue2
1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
2. Baotou Highway Engineering Company Ltd. , Baotou 014010, China
全文: PDF(3337 KB)   HTML
摘要: 

为了研究不同掺量时不同干湿循环周期下,聚乙烯醇 (PVA) 纤维混凝土在氯盐溶液中的抗Cl-渗透性能及其机理,采用核磁共振技术 (NMR),并借助扫描电镜 (SEM) 观察,对18 mm长PVA纤维在不同掺量成型的混凝土内部孔隙和氯盐分布情况进行研究分析。结果表明:相同干湿循环周期下,随着纤维掺量的增加,纤维对混凝土抗Cl-渗透性的改善作用呈先增大后减小的趋势。1.2 kg/m3掺量的纤维混凝土试件其Cl-最大浸入深度为4.1 mm,自由Cl-含量峰值为0.17%,较基准混凝土分别下降29.3%和32%,但当纤维掺量超过1.2 kg/m3后,1.6 kg/m3掺量的纤维混凝土试件中Cl-最大浸入深度为5.2 mm,抗Cl-渗透性能较基准混凝土提高10.3%。随着干湿循环周期的增加,相同PVA纤维掺量混凝土试件其自由Cl-含量的峰值点不断右移,Cl-最大浸入深度和自由Cl-含量明显增加。干湿循环周期和纤维掺量对PVA纤维混凝土抗Cl-渗透性能有较明显的影响。

关键词 聚乙烯醇纤维混凝土干湿循环核磁共振微观结构抗Cl-渗透性    
Abstract

The Cl- permeation resistance of polyvinyl alcohol fiber reinforced concrete under cyclic tests of drying in air and wetting in chloride salt solution by means of nuclear magnetic resonance (NMR) technique and microscopic scanning electron microscopy (SEM). The distribution of pores and chloride salts in concretes with different among of 18 mm long polyvinyl alcohol (PVA) fibers were assessed. The results show that under the same number of dry-wet cycle, the Cl- permeation resistance for the concretes increases first and then decreases with the increase of fiber content. The concrete with 1.2 kg/m3 polyvinyl alcohol fiber has a maximum Cl- penetration depth of 4.1 mm, and the peak value of free chloride ion content is 0.17%, which is 29.3% and 32% lower than that of the reference concrete, respectively, but when the fiber content exceeds 1.2 kg/m3, the Cl- permeation resistance of the concrete degraded, namely its maximum intrusion depth rose to 5.2 mm with Cl- penetration resistance of only 10.3% above that of the plain concrete. With the increase number of the dry-wet cycle, the peak value of the free Cl- content of the fiber-filled concretes filled with the same among of PVA was continuously shifted to the right side, correspondingly, the maximum intrusion depth and free Cl- content increased significantly. It follows that the fiber content and the number of dry-wet cycle have significant effect on the Cl- penetration resistance of PVA fiber concrete.

Key wordspolyvinyl alcohol fiber concrete    dry and wet cycle    nuclear magnetic resonance    microstructure    resistance to Cl- permeability
收稿日期: 2019-10-09     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51768056);国家自然科学基金(51868063);内蒙古自治区自然科学基金(2019MS05038)
通讯作者: 闻洋     E-mail: wenyangalbert@163.com
Corresponding author: WEN Yang     E-mail: wenyangalbert@163.com
作者简介: 熊林,男,1996年生,硕士生

引用本文:

闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
Yang WEN, Lin XIONG, Wei CHEN, Gang XUE, Wenxue SONG. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 381-388.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.175      或      https://www.jcscp.org/CN/Y2020/V40/I4/381

CodeCementWaterSandStoneFly ashWater reducing agentFiber
CC3301708371061615.4490
PC-0.83301708371061615.4490.8
PC-1.23301708371061615.4491.2
PC-1.63301708371061615.4491.6
表1  PVA纤维混凝土配合比
图1  混凝土Cl-最大浸入深度变化示意图
图2  干湿循环不同天数后不同PVA纤维掺量试件中Cl-含量变化情况
Code28 d56 d84 d112 d
CC11.46.344.934.98
PC-0.88.74.453.83.53
PC-1.28.393.883.832.66
PC-1.610.25.464.32.8
表2  自由Cl-扩散系数
图3  PVA纤维混凝土不同掺量下的T2谱
CodeT2 Spectral areaFirst peakSecond peakThird peak
AreaPercentage / %AreaPercentage / %AreaPercentage / %
CC2308950.941.2752.432.6604.726.2
PC-0.818241067.158.5623.834.2133.17.3
PC-1.21446920.362.4344.123.8181.613.8
PC-1.61578826.952.4517.632.8233.514.8
表3  不同掺量下PVA纤维混凝土T2谱面积
图4  PVA纤维混凝土不同掺量下的孔径分布图
图5  干湿循环前PVA混凝土微观形貌
图6  干湿循环112 d后PVA混凝土微观形貌
[1] Wu Z Y, Yu H F, Ma H Y, et al. Calculating the service life of high volume slag concrete structure based on reliability in ocean splash area [J]. Mater. Rep., 2019, 33: 264
[1] (吴彰钰, 余红发, 麻海燕等. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测 [J]. 材料导报, 2019, 33: 264)
[2] Wang L, Niu D T, Wang C F, et al. Analysis on chloride ion permeability of polypropylene fiber concrete under the effect of wet-dry cycles [J]. Build. Struct., 2011, 41(S2): 180
[2] (王磊, 牛荻涛, 王晨飞等. 聚丙烯纤维混凝土在干湿循环下的氯离子渗透性能研究 [J]. 建筑结构, 2011, 41(S2): 180)
[3] Niu J G, Wang X P. Experimental study on chloride ion permeability of steel-plastic fiber lightweight aggregate concrete [J]. Bull. Chin. Ceram. Soc., 2018, 37: 2025
[3] (牛建刚, 王潇鹏. 塑钢纤维轻骨料混凝土氯离子渗透性试验研究 [J]. 硅酸盐通报, 2018, 37: 2025)
[4] He Y B, Chen B X, Liu S M, et al. Study on resistance of chloride ion penetration in fly ash/silicon ash polypropylene fiber concrete under preloading condition [J]. J. Hunan Univ. (Nat. Sci.), 2017, 44(3): 97
[4] (何亚伯, 陈保勋, 刘素梅等. 预加荷载作用下粉煤灰/硅灰纤维混凝土氯离子渗透性能研究 [J]. 湖南大学学报 (自然科学版), 2017, 44(3): 97)
[5] Berrocal C G, Löfgren I, Lundgren K. The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams [J]. Eng. Struct., 2018, 163: 409
[6] Han X Q, Zhan S L, Xu Q, et al. Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion [J]. Acta Mater. Compos. Sin., 2020, 37: 198
[6] (韩学强, 詹树林, 徐强等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响 [J]. 复合材料学报, 2020, 37: 198)
[7] Zhou H Y, Zhu X M, Liu X Y. Discussion on the aging mechanism and prevention methods of polymer materials [J]. Private. Technol., 2018, (12): 25
[7] (周鸿云, 朱勋铭, 刘翔宇. 高分子材料老化机理及防治方法探讨[J]. 民营科技, 2018, (12): 25)
[8] Liu S G, Li H L, Zhang J, et al. Chlorine ion in PVA fiber cement-based composite materials combining ability [J]. Concrete, 2016, (4): 1
[8] (刘曙光, 李海林, 张菊等. PVA纤维水泥基复合材料中氯离子结合能力 [J]. 混凝土, 2016, (4): 1)
[9] Liu Q, Zhao T J, Cao C W, et al. Silver nitrate color method and its application in mortar research [J]. Coal Ash, 2016, 28(5): 36
[9] (刘庆, 赵铁军, 曹承伟等. 硝酸银显色法及其在砂浆研究中的应用 [J]. 粉煤灰, 2016, 28(5): 36)
[10] Liu J, Su P, Ou G F, et al. Factors influencing chloride penetration depth using AgNO3 colorimetric method [J]. J. Build. Mater., 2015, 18: 518
[10] (刘军, 苏鹏, 区光锋等. AgNO3显色法判断氯离子渗透深度的影响因素 [J]. 建筑材料学报, 2015, 18: 518)
[11] Sun J C. Study on the permeability of chloride ions in concrete under stress and wetting-drying cycles factors [D]. Beijing: China Building Materials Academy, 2013
[11] (孙继成. 应力及干湿循环作用下氯离子在混凝土中的渗透性研究 [D]. 北京: 中国建筑材料科学研究总院, 2013)
[12] Tian X K, Wang H L, Cheng X D, et al. Effect of crack characteristics on chloride transport in concrete: An overview [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 309
[12] (田雪凯, 王海龙, 程旭东等. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 309)
[13] Liu Q, Shen X D, Xue H J, et al. Durability of pumice concrete under chloride erosion and wet-dry cycling conditions [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(21): 137
[13] (刘倩, 申向东, 薛慧君等. 氯盐侵蚀和干湿循环条件下浮石混凝土的耐久性 [J]. 农业工程学报, 2018, 34(21): 137)
[14] Wang Z W, Liu S G, Zhang J, et al. Research on chloride erosion resistance of polyvinyl alcohol fiber reinforced cementitious composites (PVA-FRCC) under wet-dry cycles [J]. China Concr. Cem. Prod., 2015, (8): 44
[14] (王志伟, 刘曙光, 张菊等. 湿-烘循环作用下PVA纤维增强水泥基复合材料抗氯离子侵蚀性能研究 [J]. 混凝土与水泥制品, 2015, (8): 44)
[15] Zhang P, Zhao S K, Chen J Z, et al. Permeability resistance of nano-particles and PVA fiber reinforced cement based composites [J]. Bull. Chin. Ceram. Soc., 2017, 36(S1): 153
[15] (张鹏, 赵士坤, 陈继周等. 纳米粒子和PVA纤维增强水泥基复合材料抗渗性能研究 [J]. 硅酸盐通报, 2017, 36(S1): 153)
[16] Zhong J F, Wang Z L, Gao Q F. Chloride ion resistance of cementitious composites with PVA fiber reinforcement [J]. Concrete, 2019, (6): 105
[16] (钟俊飞, 王宗林, 高庆飞. PVA纤维增强水泥基复合材料抗氯离子渗透性能 [J]. 混凝土, 2019, (6): 105)
[1] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[2] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[3] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[4] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[5] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[6] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[7] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[9] 杨英,董瑜亮,高立军,宫骏,姜辛,孙超. 氮气流量及后续热处理对多弧离子镀制备Ti2AlN涂层的影响规律[J]. 中国腐蚀与防护学报, 2012, 32(1): 1-6.
[10] 张伟,王佳,赵增元,刘学庆. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程[J]. 中国腐蚀与防护学报, 2011, 31(5): 329-335.
[11] 岳汉威,马振珠,包亦望. 冲击球压法研究混凝土表面的腐蚀损伤[J]. 中国腐蚀与防护学报, 2011, 31(4): 309-314.
[12] 许韵华 曹克宁 杨玉国 赵宇 宫晓静. 高频脉冲电沉积镍钴合金镀层的硬度研究[J]. 中国腐蚀与防护学报, 2009, 29(2): 141-144.
[13] 李红; 张波; 王俭秋; 韩恩厚; 柯伟 . 合金元素Sb和Mn对Zn腐蚀的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 257-264 .
[14] 韩树民; 郑炀曾; 于升学 . 锌铝铬转化膜微观结构与成膜机理研究[J]. 中国腐蚀与防护学报, 2002, 22(5): 269-273 .