Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 557-562    DOI: 10.11902/1005.4537.2019.230
  研究报告 本期目录 | 过刊浏览 |
某油田地面集输管道用材腐蚀行为研究
赵国仙1,黄静1(),薛艳2
1. 西安石油大学材料科学与工程学院 西安 710065
2. 西安摩尔石油工程实验室股份有限公司 西安 710065
Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield
ZHAO Guoxian1,HUANG Jing1(),XUE Yan2
1. School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2. Xi'an Maurer Petroleum Engineering Laboratory, Co. , Ltd. , Xi'an 710065, China
全文: PDF(2202 KB)   HTML
摘要: 

模拟油田现场腐蚀环境,利用高温高压实验设备辅以失重法研究了某油田地面集输管道正在使用中的管材20G钢、L245钢、5Cr钢、316L不锈钢和板材16Mn钢在不同温度和CO2分压下的腐蚀行为,并采用扫描电镜 (SEM)、电子能谱 (EDS) 和X射线衍射 (XRD) 等方法对腐蚀产物的形貌及成分进行分析。结果表明:20G钢、L245钢、5Cr钢、16Mn钢和316L不锈钢均在温度一定的情况下,随CO2分压的增大,平均腐蚀速率先增大后减小;在CO2分压一定的情况下,平均腐蚀速率随温度的升高先增大后减小。在温度为80 ℃,CO2分压为0.5 MPa时,均达到最大平均腐蚀速率。20G钢、L245钢、5Cr钢和16Mn钢的腐蚀形貌为不均匀的全面腐蚀,腐蚀产物主要为FeCO3,316L不锈钢由于在腐蚀介质中发生钝化,腐蚀形貌为轻微的点蚀。

关键词 集输管道腐蚀速率气相液相    
Abstract

The corrosion behavior of 20G steel, L245 steel, 5Cr steel, 16Mn steel and 316L stainless steel in CO2 containing fluids at different temperatures and pressures was assessed by weight loss method via an autoclave, which aims to simulate the operating situation of the field. Then the morphology and composition of corrosion products were characterized by scanning electron microscopy (SEM), electronic energy spectrum (EDS) and X-ray diffraction (XRD). The results show that the average corrosion rate of 20G steel, L245 steel, 5Cr steel, 16Mn steel and 316L stainless steel increases first and then decreases with the increase of CO2 partial pressure at a given temperature, and with the increase of temperature by a given CO2 partial pressure respectively. The maximum average corrosion rate of the five materials emerged at 80 ℃ and 0.5 MPa of CO2 partial pressure. 20G steel, L245 steel, 5Cr steel and 16Mn steel were suffered from non-uniformly general corrosion with corrosion products composed mainly of FeCO3. Whilst 316L stainless steel was passivated with slight pitting corrosion in the corrosive medium.

Key wordsgathering pipeline    corrosion rate    gas phase    liquid phase
收稿日期: 2019-03-27     
ZTFLH:  TG172.8  
基金资助:西安石油大学研究生创新与实践能力培养计划(YCS18213110)
通讯作者: 黄静     E-mail: 842587939@qq.com
Corresponding author: Jing HUANG     E-mail: 842587939@qq.com
作者简介: 赵国仙,女,1968年生,博士,教授

引用本文:

赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
Guoxian ZHAO, Jing HUANG, Yan XUE. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 557-562.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.230      或      https://www.jcscp.org/CN/Y2019/V39/I6/557

SteelCSiMnSPCrNiMoCuFe
20G0.1900.2700.7500.0300.030------------Bal.
L2450.1350.3501.3500.0070.015------------Bal.
5Cr0.0320.2500.432------5.0000.1500.4000.300Bal.
16Mn0.1380.3621.3790.0110.017------------Bal.
316L0.0210.6901.0500.0200.03117.61012.4502.290---Bal.
表1  5种材料化学成分 (mass fraction / %)
Cossive medium
CO32-1530.8
Cl-2150.0
HCO3-1631.2
SO42-584.4
Na++K+3462.8
Comditions
Temperature / ℃60; 80; 90; 100; 110
CO2 partial pressure / MPa0.01; 0.25; 0.50; 0.75; 1.00
Current speed / m·s-11
Time / h168
表2  腐蚀速率测试的实验条件
图1  5种材质在0.5 MPa CO2分压条件下气相和液相环境中平均腐蚀速率随温度的变化趋势
图2  5种材质在80 ℃条件下在气相和液相环境中随CO2分压变化平均腐蚀速率变化
图3  5种材料实验后试样表面微观形貌
SteelCOSiMnFeCrNiMo
20G9.3624.420.650.2165.36---------
L24511.8336.88------51.29---------
5Cr11.1836.79------40.7511.28------
16Mn9.2432.74---0.6857.33---------
316L5.841.450.96---70.8211.837.461.64
表3  腐蚀产物EDS分析结果
图4  5种材料实验后试样表面XRD谱
[1] Hao M, Song Y C. Research status of CO2-EOR [J]. Drill. Product. Technol., 2009, 33(4): 59
[1] (郝敏, 宋永臣. 利用CO2提高石油采收率技术研究现状 [J]. 钻采工艺, 2009, 33(4): 59)
[2] Chi L Y. Carbon dioxide corrosion and technology study in the gathering and transportation system [D]. Daqing: Northeast Petroleum University, 2017
[2] (迟丽颖. 地面集输系统CO2腐蚀与防腐技术研究 [D]. 大庆: 东北石油大学, 2017)
[3] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
[4] Sun J B, Liu W, Chang W, et al. Characteristics and formation mechanism of CO2 corrosion product film of low chromium X65 pipeline steel [J]. Acta metall. Sin., 2009, 45(1): 84
[4] (孙建波, 柳伟, 常炜等. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制 [J]. 金属学报, 2009, 45(1): 84)
[5] Su J H, Zhang X Y, Wang F P, et al. CO2 corrosion of steels in high salinity solution [J]. Mater. Prot., 1998, 31(11): 21
[5] (苏俊华, 张学元, 王凤平等. 高矿化度介质中二氧化碳腐蚀金属的规律 [J]. 材料保护, 1998, 31(11): 21)
[6] Dugstad A, Lunde L, Videm K. Parametric study of CO2 corrosion of carbon steel [A]. Corrosion/94 [C]. Houston, TX: NACE International, 1994
[7] Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and Cr steels [A]. Hausler R H, Godard H P. Advanced in CO2 Corrosion. Vol. 1 [C]. Houston, TX: NACE, 1984: 39
[8] Masamura K, Inohara Y, Minami Y. Effects of C and N on corrosion resistance of high Cr alloys in CO2 and H2S environments [A]. Corrosion/98 [C]. Houston: Omnipress, 1998
[9] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-a compendium [J]. Corrosion, 2003, 59: 659
[10] Videm K, Dugstad A, Lunde L. Parametric study of CO2 corrosion of carbon steel [A]. Corrosion/94 [C]. Houston: NACE International, 1994: 14
[11] Carlos A, Palacious T, Hernandez Y. Application of simulation techniquies for internal corrosion prediction [A]. Corrosion/97 [C]. Houston: NACE, 1997
[12] SridharSrinivasan, Kane R D. Prediction of corrosivity of CO2/H2S production environments [A]. Corrosion/96 [C]. Denver, Colorado: NACE, 1996
[13] Gray L G S, Anderson B G. Effect of PH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide [A]. Corrosion/90 [C]. Houston: NACE, 1990
[14] Chen C X, Li W S, Wang Q P, et al. Research on influencing factor of impact toughness in coarse grain heat-affected zone for X80 pipeline steel [J]. J. Mater. Eng., 2005, (5): 22
[14] (陈翠欣, 李午申, 王庆鹏等. X80管线钢焊接粗晶区韧化因素的研究 [J]. 材料工程, 2005, (5): 22)
[15] Heuer J K, Stubbins J F. Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow [J]. Corrosion, 1998, 54: 566
[1] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[3] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[4] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[5] 朱紫晶,魏莉莎,陈振宇,邱于兵,郭兴蓬. 薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 216-220.
[6] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[7] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[8] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[9] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[10] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[11] 孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[12] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[13] 张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[14] 滕飞,井宇阳,胡钢. 铸铁文物复合气相缓蚀剂的复配与研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 265-270.
[15] 王雪莹, 王佳, 刘在健, 丁健, 王海杰. 金属罐内涂层破损区气相定位检测局部电化学探头技术的研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 169-176.