Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 441-449    DOI: 10.11902/1005.4537.2015.182
  本期目录 | 过刊浏览 |
耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究
张建春1(),蒋金洋2,李阳1,施锦杰2,左龙飞1,王丹芊2,麻晗1
1. 江苏省 (沙钢) 钢铁研究院 张家港 215625
2. 东南大学材料科学与工程学院 南京 211189
Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions
Jianchun ZHANG1(),Jingyang JIANG2,Yang LI1,Jinjie SHI2,Longfei ZUO1,Danqian WANG2,Han MA1
1. Institute of Research of Iron & Steel, Shasteel, Zhangjiagang 215625, China
2. School of Material Science and Engineering, Southeast University, Nanjing 211189, China
全文: PDF(907 KB)   HTML
摘要: 

选取耐海水腐蚀钢筋00Cr10MoV为实验材料,采用X射线光电子能谱 (XPS)、电化学阻抗谱 (EIS) 和极化曲线等测试方法,研究了其在模拟混凝土孔隙液中钝化膜的组成和电化学行为,以及Cl-对其钝化膜的影响。结果表明,00Cr10MoV试样在该条件下的钝化膜组成主要为FeO,Cr2O3,γ-FeOOH和CrOOH;Cl-的存在对钝化膜形成有阻碍作用,且使试样的点蚀电位和电荷转移电阻有所下降,但对维钝电流密度影响不大;试样钝化240 h后形成的钝化膜耐Cl-侵蚀能力较强,当Cl-浓度达到5 mol/L时,电荷转移电阻仍维持在较大值,约为2.755×106 Ωcm2,其耐Cl-侵蚀能力明显优于20MnSiV钢。

关键词 耐海水腐蚀钢筋模拟混凝土孔隙液钝化膜电化学阻抗谱电荷转移电阻    
Abstract

The electrochemical corrosion behavior of the seawater corrosion resistant rebar steel 00Cr10MoV and the formed passive films on this rebar in simulated concrete pore solutions were examined by means of electrochemical impedance spectroscopy (EIS), polarization curves and X-ray photoelectron spectroscopy (XPS). While the effect of Cl- in solutions on the formation of passive films was also investigated. The results show that passive films formed on the 00Cr10MoV steel in simulated concrete pore solutions were composed of FeO, Cr2O3, γ-FeOOH and CrOOH. The Cl- prevented the formation of passive films on the steel, and thereby resulted in decrease of pitting potential and charge-transfer resistance, but in little impact on the passive current density. The passive films formed on the steel after immersion in artificial solutions for 240 h exhibited excellent corrosion resistance to Cl- solutions, which could maintain a large charge-transfer resistance of 2.755×106 Ωcm2 in solutions with Cl- concentration as high as 5 mol/L. In general, the 00Cr10MoV steel exhibited resistance to Cl- attack superior to 20MnSiV steel.

Key wordsseawater corrosion resistant rebar    simulated concrete pore solution    passive film    electrochemical impedance spectroscopy    charge-transfer resistance
    
基金资助:江苏省产学研联合创新资金―前瞻性联合研究项目(BY2013091)资助

引用本文:

张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
Jianchun ZHANG, Jingyang JIANG, Yang LI, Jinjie SHI, Longfei ZUO, Danqian WANG, Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 441-449.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.182      或      https://www.jcscp.org/CN/Y2016/V36/I5/441

Steel C Si Mn P S Cr Mo V Fe
00Cr10MoV ≤0.03 0.40~0.60 1.40~1.60 ≤0.01 ≤0.01 9.5~10.5 0.9~1.2 0.03~0.10 Bal.
20MnSiV 0.21 0.49 1.44 0.019 0.007 --- --- 0.028 Bal.
表1  实验钢的化学成分
图1  试样在不含Cl-的模拟混凝土孔隙液中浸泡240 h后钝化膜成分的XPS结果
图2  00Cr10MoV试样在不含Cl-的模拟混凝土孔隙液中浸泡240 h后钝化膜中Fe和Cr的XPS结果
图3  00Cr10MoV试样在两种溶液中浸泡240 h后钝化膜中元素组成随溅射深度的分布
图4  20MnSiV试样在不含Cl-的模拟混凝土孔隙液中浸泡240 h后钝化膜中Fe和Cr的XPS结果
图5  试样在两种溶液中浸泡0.5 h后的极化曲线
图6  试样在两种溶液中浸泡0.5 h后的阻抗图及其拟合结果
图7  等效模拟电路
Solution Sample Rs / Ωcm2 Qdl-Yo / Ssncm-2 Qdl-n / 0~1 Rt / Ωcm2
Ca(OH)2 00Cr10MoV 28.36 2.377×10-5 0.926 3.138×105
20MnSiV 23.69 2.713×10-5 0.941 2.384×105
Ca(OH)2+NaCl 00Cr10MoV 3.80 2.912×10-5 0.931 1.327×105
20MnSiV 1.64 3.323×10-5 0.947 0.904×105
表2  电化学阻抗谱拟合结果
图8  不同Cl-浓度下试样的腐蚀电位变化曲线
图9  不同Cl-浓度下试样的电化学阻抗谱及其拟合结果
图10  不同Cl-浓度下试样的Rt变化曲线
[1] Wang Y, Shi Y X, Wei B M, et al.Study on the passive film and effect of Cl- on passive film by XPS[J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 107
[1] (汪鹰, 史苑芗, 魏宝明等. 用XPS研究钢筋钝化膜和Cl-对钝化膜的影响[J]. 中国腐蚀与防护学报, 1998, 18(2): 107)
[2] Chen H Y, Li H Y, Chen P M, et al.Electrochemical corrosion behavior of reinforcing steel in simulated concrete solution[J]. J. Build. Mater., 2013, 16(1): 130
[2] (陈海燕, 李欢园, 陈丕茂等. 钢筋在混凝土模拟液中的电化学腐蚀行为[J]. 建筑材料学报, 2013, 16(1): 130)
[3] Wang X Y, Wu Y S, Zhang L, et al.Research progress of passive film of stainless steel[J]. Mater. Rev., 1999, 13(3): 13
[3] (汪轩义, 吴荫顺, 张琳等. 不锈钢钝化膜研究进展[J]. 材料导报, 1999, 13(3): 13)
[4] Ennaoui A, Schlichth?rl G, Fiechter S, et al.Vapor phase epitaxial growth of FeS2 pyrite and evaluation of the carrier collection in liquid-junction solar cell[J]. Sol. Energy Mater. Sol. Cells, 1992, 25(2): 169
[5] Zuo L F, Ma H, Huang W K, et al.Development of 400MPa-grade seawater corrosion resistant rebar in sha-steel[J]. Steel Roll., 2014, 31: 58
[5] (左龙飞, 麻晗, 黄文克等. 沙钢400MPa级耐海水腐蚀螺纹钢的开发[J]. 轧钢, 2014, 31: 58)
[6] Zhang J C, Huang W K, Ma H.Microstructure and properties of 20MnSiCrV corrosion resistant rebar in continuous cooling transformation[J]. Hot Work. Technol., 2014, 43(6): 91
[6] (张建春, 黄文克, 麻晗. 耐蚀钢筋20MnSiCrV的连续冷却转变组织与性能[J]. 热加工工艺, 2014, 43(6): 91)
[7] Chu W, Shi Y X, Wei B M, et al.Study on the electrochemical method for simulating the passive film of the steel in the concrete pore solution[J]. J. Electrochem., 1995, 1(3): 291
[7] (储炜, 史苑芗, 魏宝明等. 模拟混凝土孔隙液中钢筋钝化膜的光电化学方法研究[J]. 电化学, 1995, 1(3): 291)
[8] Wang J.Study on corrosion resistance passive film on stainless steel surface [D]. Chengdu: Southwest Jiaotong University, 2014
[8] (王杰. 不锈钢表面耐点蚀性钝化膜的研究 [D]. 成都: 西南交通大学, 2014)
[9] Gonz Lez-garci' A Y, Burstein G T, Gonz Lez S, et al. Imaging meta stable pits on austenitic stainless steel in situ at the open-circuit corrosion potential[J]. Electrochem. Commun., 2004, 6(7): 637
[10] Cheng Y F, Bullerwell J, Steward F R.Electrochemical investigation of the corrosion behavior of chromium modified carbon steel in water[J]. Electrochim. Acta, 2003, 48(11): 1521
[11] Huang J H, Li Z G, Qian Y H.Study on corrosion resistance of low alloy corrosion resistant steel in simulated corrosion environment[J]. Shanghai Met., 2006, 28(4): 6
[11] (黄锦花, 李自刚, 钱余海. 低合金耐海水腐蚀钢在模拟腐蚀环境下的耐蚀性研究[J]. 上海金属, 2006, 28(4): 6)
[12] Sikora E, Macdonald D D.Nature of the passive film on nickel[J]. Electrochim. Acta, 2002, 48(1): 69
[13] Zhang C X, Zhang Z H.Study on corrosion resistance of G3 Ni based alloy passive film[J]. Bao-steel Technol., 2008, (5): 35
[13] (张春霞, 张忠铧. G3镍基合金钝化膜的耐蚀性研究[J]. 宝钢技术, 2008, (5): 35)
[14] Cai W T, Zhao G S, Zhao D W, et al.Corrosion resistance and semiconductor properties of passive film of super 13Cr stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2011, 33(10): 1226
[14] (蔡文婷, 赵国山, 赵大伟等. 超级13Cr不锈钢的钝化膜耐蚀性与半导体特性[J]. 北京科技大学学报, 2011, 33(10): 1226)
[15] Gui Y, Gao Y.Research progress on the characteristics of passive film on stainless steel surface[J]. Spec. Steel, 2011, 32(3): 20
[15] (桂艳,高岩等. 不锈钢表面钝化膜特性的研究进展[J]. 特殊钢, 2011, 32(3): 20)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[7] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[8] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[11] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[12] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[14] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.