|
|
超临界机组汽水系统腐蚀产物迁徙过程研究 |
蒋东方1,白杨2,朱忠亮1,张乃强1( ),肖卓楠1,徐鸿1 |
1. 华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206 2. 宁夏电力公司电力科学研究院 银川 750001 |
|
Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units |
Dongfang JIANG1,Yang BAI2,Zhongliang ZHU1,Naiqiang ZHANG1( ),Zhuonan XIAO1,Hong XU1 |
1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China 2. Electric Power Research Institute of Ningxia Electric Power Corporation, Yinchuan 750001, China |
引用本文:
蒋东方,白杨,朱忠亮,张乃强,肖卓楠,徐鸿. 超临界机组汽水系统腐蚀产物迁徙过程研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 343-348.
Dongfang JIANG,
Yang BAI,
Zhongliang ZHU,
Naiqiang ZHANG,
Zhuonan XIAO,
Hong XU.
Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 343-348.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2016.011
或
https://www.jcscp.org/CN/Y2016/V36/I4/343
|
[1] | Comley G C W. The significance of corrosion products in water reactor coolant circuits[J]. Prog. Nucl. Energy, 1985, 16(1): 41 | [2] | Johari J M C. Modelling corrosion for corrosion-product transport in CANDU reactors and PWRs [D]. New Brunswick,University of New Brunswick, 1994 | [3] | Cook W G.The effects of high velocity coolant and intermittent wear on corrosion-product transport in PWRs [D]. New Brunswick, University of New Brunswick, 1997 | [4] | Lin C C.A review of corrosion product transport on fuel cladding surfaces [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems[C]. Jeju Island, 2006 | [5] | Lin C C.A review of corrosion product transport and radiation field buildup in boiling water reactors[J]. Prog. Nucl. Energy, 2009, 51: 207 | [6] | Guzonas D, Brosseau F, Tremaine P, et al.Water chemistry in a supercritical water-cooled pressure tube reactor[J]. Nucl. Technol., 2012, 179(2): 205 | [7] | Saito N, Tsuchiya Y, Yamamoto S, et al.Chemical thermodynamics consideration on corrosion products in supercritical-water-cooled reactor coolant[J]. Nucl. Technol., 2006, 155(1): 105 | [8] | Dooley R B.Flow-accelerated corrosion in fossil and combined cycle/HRSG plants[J]. Power Plant Chem., 2008, 10(2): 68 | [9] | Solomon Y.An overview of water chemistry for pressurized water nuclear reactors [A]. Proceedings of an International Conference on Water Chemistry of Nuclear Reactor Systems[C]. Bournemouth, 1977 | [10] | Dooley R B, Shields K J, Shulder S J.Flow-accelerated corrosion-flow-accelerated corrosion (FAC) in conventional fossil units: Cycle chemistry influences and management approach[J]. Power Plant Chem., 2009, 11(6): 352 | [11] | Dooley R B, Shields K, Aschoff A, et al.Cycle chemistry guidelines for fossil plants: Oxygenated treatment [R]. California, EPRI,2005 | [12] | Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371(1): 176 | [13] | Was G S, Allen T R.Time, temperature, and dissolved oxygen dependence of oxidation of austenitic and ferritic-martensitic alloys in supercritical water [A]. Proceedings of ICAPP[C]. Seoul, 2005 | [14] | Allen T R, Sridharan K, Tan L, et al.Materials challenges for generation IV nuclear energy systems[J]. Nucl. Technol., 2008, 162(3): 342 | [15] | Zhong X Y, Wu X Q, Han E-H.Corrosion behaviors of nuclear-grade stainless steel and ferritic-martensitic steel in supercritical water[J]. Acta Metall. Sin., 2011, 47(7): 932 | [15] | (钟祥玉, 吴欣强, 韩恩厚. 核级不锈钢和铁素体-马氏体耐热钢在400 ℃/25 MPa超临界水中的腐蚀行为[J]. 金属学报, 2011, 47(7): 932) | [16] | Zhang N Q, Xu H, Li B R, et al.Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water[J]. Corros. Sci., 2012, 56: 123 | [17] | Yang K, Xu M X, Liu C M.Physicochemical properties of supercritical water[J]. J. Zhejiang Univ. Technol., 2001, 29(4): 386 | [17] | (杨馗, 徐明仙, 林春绵. 超临界水的物理化学性质[J]. 浙江工业大学学报, 2001, 29(4): 386) | [18] | Akiya N, Savage P E.Roles of water for chemical reactions in high-temperature water[J]. Chem. Rev., 2002, 102(8): 2725 | [19] | Sue K, Adschiri T, Arai K.Predictive model for equilibrium constants of aqueous inorganic species at subcritical and supercritical conditions[J]. Ind. Eng. Chem. Res., 2002, 41(13): 3298 | [20] | Fujiwara K, Domae M, Yoneda K, et al.Model of physico-chemical effect on flow accelerated corrosion in power plant[J]. Corros. Sci., 2011, 53(11): 3526 | [21] | Cook W G, Olive R P.Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions[J]. Corros. Sci., 2012, 55: 326 | [22] | Guan X, Macdonald D D.Determination of corrosion mechanisms and estimation of electrochemical kinetics of metal corrosion in high subcritical and supercritical aqueous systems[J]. Corrosion, 2009, 65(6): 376 | [23] | Zhu Z L, Xu H, Jiang D F, et al.The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel[J]. J. Supercrit. Fluids, 2016, 108: 56 | [24] | Jiang D F, Xu H, Deng B, et al.Effect of oxygenated treatment on corrosion of the whole steam-water system in supercritical power plant[J]. Appl. Therm. Eng., 2016, 93: 1248 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|