Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 343-348    DOI: 10.11902/1005.4537.2016.011
  研究报告 本期目录 | 过刊浏览 |
超临界机组汽水系统腐蚀产物迁徙过程研究
蒋东方1,白杨2,朱忠亮1,张乃强1(),肖卓楠1,徐鸿1
1. 华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206
2. 宁夏电力公司电力科学研究院 银川 750001
Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units
Dongfang JIANG1,Yang BAI2,Zhongliang ZHU1,Naiqiang ZHANG1(),Zhuonan XIAO1,Hong XU1
1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China
2. Electric Power Research Institute of Ningxia Electric Power Corporation, Yinchuan 750001, China
全文: PDF(1642 KB)   HTML
摘要: 

从汽水系统腐蚀产物迁徙过程入手,探讨了超临界机组汽水系统腐蚀产物的来源,即低压加热器和高压加热器等部件发生流动加速腐蚀产生大量腐蚀产物,进入工质随工质进行迁徙。由于工质物性参数的变化,腐蚀产物溶解度降低,大量腐蚀产物沉积在高温管道。研究发现,炉管氧化皮的生成一方面来源于自身高温氧化,另一方面来自腐蚀产物沉积。结果表明,汽水系统不同部件内腐蚀形式不同,可以通过提高给水品质来抑制腐蚀产物迁徙对机组的影响,保证机组安全稳定运行。

关键词 超临界机组汽水系统腐蚀产物离子迁徙    
Abstract

The explosion of boiler tubes induced by the oxide scale causes a great influence on the safety and economy of power plants. The source of corrosion products in supercritical power plants is analyzed based on the physical and chemical properties of supercritical water, while the moving process of corrosion products can be described as follows: the corrosion products generated in the low pressure heaters and high pressure heaters, and then they are moving with the water. As the solubility of the corrosion products in the water was changed, which depended on both the pH and temperature, therewith the corrosion products deposit on the high temperature tubes. It follows from the analysis that the oxide scales on the boiler wall seem to be from two origins: the one is the high temperature corrosion of the tube wall itself, the other one is the deposition of corrosion products from upstream. Furthermore, the effect of the moving of corrosion products on the operation of power unit may be modified by properly inducing feed water of high quality in the steam-water system, thereby to ensure the safe and stable operation of the supercritical power unit.

Key wordssupercritical unit    steam-water system    corrosion product    transport process
    
基金资助:国家自然科学基金项目 (51471069),北京市自然科学基金项目(2152029)和中央高校基本科研业务费专项资金项目(2015ZD005) 资助

引用本文:

蒋东方,白杨,朱忠亮,张乃强,肖卓楠,徐鸿. 超临界机组汽水系统腐蚀产物迁徙过程研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 343-348.
Dongfang JIANG, Yang BAI, Zhongliang ZHU, Naiqiang ZHANG, Zhuonan XIAO, Hong XU. Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 343-348.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.011      或      https://www.jcscp.org/CN/Y2016/V36/I4/343

图1  某超临界机组汽水系统流程图
图2  金属腐蚀机理
图3  腐蚀产物迁徙过程示意图
图4  水的介电常数和密度随工质温度和压力的变化
图5  离子积随工质温度和压力的变化
图6  Fe溶解度随温度和pH值变化曲线
图7  汽水系统腐蚀行为趋势图
图8  汽水系统Fe2+含量变化
[1] Comley G C W. The significance of corrosion products in water reactor coolant circuits[J]. Prog. Nucl. Energy, 1985, 16(1): 41
[2] Johari J M C. Modelling corrosion for corrosion-product transport in CANDU reactors and PWRs [D]. New Brunswick,University of New Brunswick, 1994
[3] Cook W G.The effects of high velocity coolant and intermittent wear on corrosion-product transport in PWRs [D]. New Brunswick, University of New Brunswick, 1997
[4] Lin C C.A review of corrosion product transport on fuel cladding surfaces [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems[C]. Jeju Island, 2006
[5] Lin C C.A review of corrosion product transport and radiation field buildup in boiling water reactors[J]. Prog. Nucl. Energy, 2009, 51: 207
[6] Guzonas D, Brosseau F, Tremaine P, et al.Water chemistry in a supercritical water-cooled pressure tube reactor[J]. Nucl. Technol., 2012, 179(2): 205
[7] Saito N, Tsuchiya Y, Yamamoto S, et al.Chemical thermodynamics consideration on corrosion products in supercritical-water-cooled reactor coolant[J]. Nucl. Technol., 2006, 155(1): 105
[8] Dooley R B.Flow-accelerated corrosion in fossil and combined cycle/HRSG plants[J]. Power Plant Chem., 2008, 10(2): 68
[9] Solomon Y.An overview of water chemistry for pressurized water nuclear reactors [A]. Proceedings of an International Conference on Water Chemistry of Nuclear Reactor Systems[C]. Bournemouth, 1977
[10] Dooley R B, Shields K J, Shulder S J.Flow-accelerated corrosion-flow-accelerated corrosion (FAC) in conventional fossil units: Cycle chemistry influences and management approach[J]. Power Plant Chem., 2009, 11(6): 352
[11] Dooley R B, Shields K, Aschoff A, et al.Cycle chemistry guidelines for fossil plants: Oxygenated treatment [R]. California, EPRI,2005
[12] Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371(1): 176
[13] Was G S, Allen T R.Time, temperature, and dissolved oxygen dependence of oxidation of austenitic and ferritic-martensitic alloys in supercritical water [A]. Proceedings of ICAPP[C]. Seoul, 2005
[14] Allen T R, Sridharan K, Tan L, et al.Materials challenges for generation IV nuclear energy systems[J]. Nucl. Technol., 2008, 162(3): 342
[15] Zhong X Y, Wu X Q, Han E-H.Corrosion behaviors of nuclear-grade stainless steel and ferritic-martensitic steel in supercritical water[J]. Acta Metall. Sin., 2011, 47(7): 932
[15] (钟祥玉, 吴欣强, 韩恩厚. 核级不锈钢和铁素体-马氏体耐热钢在400 ℃/25 MPa超临界水中的腐蚀行为[J]. 金属学报, 2011, 47(7): 932)
[16] Zhang N Q, Xu H, Li B R, et al.Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water[J]. Corros. Sci., 2012, 56: 123
[17] Yang K, Xu M X, Liu C M.Physicochemical properties of supercritical water[J]. J. Zhejiang Univ. Technol., 2001, 29(4): 386
[17] (杨馗, 徐明仙, 林春绵. 超临界水的物理化学性质[J]. 浙江工业大学学报, 2001, 29(4): 386)
[18] Akiya N, Savage P E.Roles of water for chemical reactions in high-temperature water[J]. Chem. Rev., 2002, 102(8): 2725
[19] Sue K, Adschiri T, Arai K.Predictive model for equilibrium constants of aqueous inorganic species at subcritical and supercritical conditions[J]. Ind. Eng. Chem. Res., 2002, 41(13): 3298
[20] Fujiwara K, Domae M, Yoneda K, et al.Model of physico-chemical effect on flow accelerated corrosion in power plant[J]. Corros. Sci., 2011, 53(11): 3526
[21] Cook W G, Olive R P.Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions[J]. Corros. Sci., 2012, 55: 326
[22] Guan X, Macdonald D D.Determination of corrosion mechanisms and estimation of electrochemical kinetics of metal corrosion in high subcritical and supercritical aqueous systems[J]. Corrosion, 2009, 65(6): 376
[23] Zhu Z L, Xu H, Jiang D F, et al.The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel[J]. J. Supercrit. Fluids, 2016, 108: 56
[24] Jiang D F, Xu H, Deng B, et al.Effect of oxygenated treatment on corrosion of the whole steam-water system in supercritical power plant[J]. Appl. Therm. Eng., 2016, 93: 1248
[1] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[2] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[3] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[4] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[5] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[6] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[7] 董赋,胡裕龙,赵欣,王智峤. 静水压力对10CrNi3MoV钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[8] 胡骞,刘静,王玉昆,黄峰,戴明杰,侯阳来. 不同组织A710钢在NaCl溶液中耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[9] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[10] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[11] 刘艳洁,王振尧,柯伟. 纯Al在3种典型沿海,工业和乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[12] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[13] 王振尧, 于全成, 陈军君, 王军, 徐松, 胡波涛. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(1): 53-58.
[14] 梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[15] 杨雨辉,肖伟龙,柴柯,吴进怡. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 294-298.