Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (6): 481-490    
  研究论文 本期目录 | 过刊浏览 |
海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响
柴 柯 罗 琦 吴进怡
海南大学材料与化工学院 海南优势资源化工材料应用技术教育部重点实验室 海口 570228
Effect of Pseudomonas on Electrochemical Corrosion Behavior of S45C Steel in Seawater and a Culture Medium
CHAI Ke, LUO Qi, WU Jinyi
Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Material and Chemical Engineering College, Hainan University, Haikou 570228, China
全文: PDF(3762 KB)  
摘要: 采用微生物分析、失重法、自腐蚀电位、EIS、动电位极化曲线和SEM等手段对比研究了45钢在无菌海水、无菌培养基、假单胞菌海水和假单胞菌培养基4种不同环境下的腐蚀行为。结果表明:腐蚀初期假单胞菌及培养基均对45钢有缓蚀作用。但随着时间的推移,假单胞菌新陈代谢作用引起了氧浓差腐蚀,且其代谢产物中的碱及铁载体的局部堆积加速了45钢的腐蚀。培养基环境对微生物腐蚀有促进作用。
关键词 45钢微生物腐蚀假单胞菌极化曲线电化学阻抗谱    
Abstract:The effect of pseudomonas on electrochemical corrosion behavior of 45 carbon steel was comparatively studied in seawater and a culture medium with and without the presence of pseudomonas, by means of microbiological analysis, weight loss method, corrosion potential measurements, EIS, potentialdynamic polarization curve and SEM, etc. The results showed that both pseudomonas and the medium exhibited inhibiting effect for the steel. Organic compounds in the medium could be absorbed onto steel surface and change the cathodic and anodic reaction of the corrosion process. The mechanisms of the effect of pseudomonas on corrosion behavior varied with immersing time: at the initial stage, the dissolved oxygen concentration in the environment was reduced by bacteria metabolism, which slowed down the corrosion rate. By prolonging the corrosion time, however, the partly quantitative accumulation of pseudomonas metabolites, which include alkaline substances and siderophores, finally accelerated the corrosion rate of the steel. Rich nutritious contents in the medium could promote mass propagation of pseudomonas, thus accelerated the influence of pseudomonas on corrosion behavior.
Key words45 carbon steel    microbiologically induced corrosion    pseudomonas    polarization curve    electrochemical impedance spectroscopy
收稿日期: 2013-03-19     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金项目 (50761004,51161007和51261006) 及海南省自然科学基金项目 (510204和511112) 资助
通讯作者: 吴进怡,E-mail:wujinyi1976@aliyun.com   
作者简介: 柴柯,男,1972年生,讲师,研究方向为热带海洋气候下金属的生物腐蚀与防护

引用本文:

柴柯, 罗琦, 吴进怡. 海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 481-490.
CHAI Ke, LUO Qi, WU Jinyi. Effect of Pseudomonas on Electrochemical Corrosion Behavior of S45C Steel in Seawater and a Culture Medium. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 481-490.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I6/481

[1] Li S H, Du J, Liu J H, et al. Corrosion behavior of steel A3 influenced by thiobacillus thiooxidans [J]. Acta Phys.- Chim. Sin., 2009, 25(11): 2191-2198
(李松海, 杜娟, 刘建华等. A3钢在氧化硫硫杆菌作用下的腐蚀行为 [J]. 物理化学学报, 2009, 25(11): 2191-2198)
[2] Yang H, Xue X P, Fu Z X, et al. Research advances on microbiologically influenced corrosion and its prevention measures in marine environment [J]. Chem. Bioeng., 2010, 27(1): 1-5
(杨慧, 薛小平, 傅增祥等. 海洋环境中微生物腐蚀及其防护研究进展 [J]. 化学与生物工程, 2010, 27(1): 1-5)
[3] Zhang Y, Lin J, Yu G W. 304 stainless steel microbiological influenced corrosion characteristic research [J]. Surf. Technol., 2009, 38(3): 44-45
(张燕, 林晶, 于贵文. 304不锈钢得微生物腐蚀行为研究 [J]. 表面技术, 2009, 38(3): 44-45)
[4] Guo P, Yan M, Huang G Q, et al. A study on microbiologically influenced corrosion of a carbon steel in seawater [J]. Corros. Sci. Prot. Technol., 2006, 18(6): 410-413
(郭鹏, 颜民, 黄桂桥等. 海水中碳钢内锈层中的微生物及其对腐蚀的影响 [J]. 腐蚀科学与防护技术, 2006, 18(6): 410-413)
[5] Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53
(刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53)
[6] Zhao X D, Duan J Z, Wu S R, et al. Formation and transformation of surface corrosion products of Q235 steel influenced by sulfate-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2008, 28(5): 299-302
(赵晓栋, 段继周, 武素茹等. 海水中硫酸盐还原菌作用下Q235钢表面腐蚀产物的形成和转化 [J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302
[7] Wu J Y, Luo Q, Xiao W L, et al. Influence of vibrio on corrosion behaviors and mechanical properties of 45 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 343-348
(吴进怡, 罗琦, 肖伟龙等. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32(4): 343-348)
[8] Wu J Y, Xiao W L, Chai K, et al. The single effect of microbe on the corrosion behaviors of 45 steel in seawater in tropic condition [J]. Acta Metall. Sin., 2010, 46(1): 118-122
(吴进怡, 肖伟龙, 柴柯等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响 [J]. 金属学报, 2010, 46(1): 118-122)
[9] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J]. Acta Metall. Sin., 2010, 46(6): 755-760
(吴进怡, 柴柯, 肖伟龙等. 25钢在海水中的微生物单因素腐蚀 [J]. 金属学报, 2010, 46(6): 755-760)
[10] Xiao W L, Chai K, Wu J Y, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 359-363
(肖伟龙, 柴柯, 吴进怡等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363)
[11] Buchanan R E, Gibbons N E. Bergey's Manual of Determinative Bacteriology [M]. 8th Ed., Baltimore, Maryland: The Williams and Wilkins Company, 1974
[12] Yang Y H, Xiao W L, Chai K, et al. Composition of bacteria in corrosion product of carbon steel with different carbon content immersed in seawater for different time [J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 1-5
(杨雨辉, 肖伟龙, 柴柯等. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响 [J]. 中国腐蚀与防护学报, 2011, 31(4): 1-5)
[13] Duan Y, Li S M, Du J, et al. Corrosion behavior of Q235 steel in the presence of pseudomonas and iron bacteria [J]. Acta Phys. Chim. Sin., 2010, 26(12): 3203-3211
(段冶, 李松梅, 杜娟等. Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为 [J]. 物理化学学报, 2010, 26(12): 3203-3211)
[14] Li S M, Wang Y Q, Liu J H, et al. Influence of pseudomonas on the corrosion behaviors of steel A3 in cladosporium solution [J]. Acta Phys.-Chim. Sin., 2007, 23(12): 1963-1968
(李松梅, 王彦卿, 刘建华等. 假单胞菌对A3钢在枝孢霉菌溶液中腐蚀行为的影响 [J]. 物理化学学报, 2007, 23(12): 1963-1968)
[15] Chang X T, Yin Y S, Niu G H, et al. The electrochemical behavior of oceanic microbiological influenced corrosion on carbon steel [J]. Acta Metall. Sin.(Engl. Lett.), 2007, 20(5): 334-340
[16] Pi Z B, Fan Y J, Hua P, et al. Electrochemical studies on carbon steel corrosion induced by mixed colonies [J]. Corros. Sci. Prot. Technol., 2002, 14(3): 166-168
(皮振邦, 樊友军, 华萍等. 混合菌种对碳钢腐蚀行为的电化学研究 [J]. 腐蚀科学与防护技术, 2002, 14(3): 166-168)
[17] Wu J H, Liu G Z, Yu H, et al. Electrochemical methods for study of microbiologically influenced corrosion in marine environment [J]. Corros. Prot., 1999, 20(5): 231-237
(吴建华, 刘光洲, 于辉等. 海洋微生物腐蚀的电化学研究方法 [J]. 腐蚀与防护, 1999, 20(5): 231-237)
[18] Chao C N, Zhang J Q. An Introduction to Electrochemical Impedence Spectroscopy [M]. Beijing: Science Press, 2002
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[19] Cui B Y, Zhang Z B, Huo S Z. Despersion effect of Ti A.C. impedance [J]. Corros. Sci. Prot. Technol., 1994, 6(2): 123-130
(崔宝玉, 张振邦, 火时中. 钛电极交流阻抗谱的弥散效应 [J]. 腐蚀科学与防护技术, 1994, 6(2): 123-130)
[20] Lin J, Zhu G W, Sun C. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13(5): 279-284
(林建, 朱国文, 孙成. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13(5): 279-284)
[21] Poole K, McKay G A. Iron acquisition and its control in pseudomonas aeruginosa: many roads lead to Rome [J]. Front. Biosci., 2003, 8: 661-686
[22] Zhang Y X, Yu J, Chai T Y, et al. Mechanism of heavy-metal tolerance in pseudomonas aeruginosa ZGKD2 [J]. Chin. J. Envir. Sci., 2012, 33(10): 3613-3619
(张玉秀, 玉姣, 柴团耀等. 铜绿假单胞菌ZGKD2的重金属耐性机制研究 [J]. 环境科学, 2012, 33(10): 3613-3619)
[23] Zhao X, Chen S X, Xie Z X, et al. Isolation, identification and over-siderophores production of Pseudomonas fluorescens sp-f [J]. Acta Microbiol. Sin., 2006, 46(5): 691-695
(赵翔, 陈绍兴, 谢志雄等. 高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究 [J]. 微生物学报, 2006, 46(5): 691-695)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[9] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[13] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[14] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[15] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.