Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (6): 463-469    
  研究论文 本期目录 | 过刊浏览 |
磁场对Q235钢微生物腐蚀行为的影响
李克娟 郑碧娟 陈 碧 刘宏芳
华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
Effect of Magnetic Field on Microbiologically-influenced Corrosion Behavior of Q235 Steel
LI Kejuan, ZHENG Bijuan, CHEN Bi, LIU Hongfang
Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Sciences and Technology, Wuhan
430074, China
全文: PDF(4407 KB)  
摘要: 采用腐蚀失重法、电化学测量技术和表面分析技术研究硫酸盐还原菌 (SRB) 在外加磁场下对Q235钢的腐蚀行为。结果表明,磁场条件下SRB对Q235钢的腐蚀作用较无磁场条件下减轻,其阻抗值先减小后增大,而无磁场条件下的阻抗值先增大后减小,说明磁场条件下试样表面的生物膜形成滞后。SEM的分析结果显示,磁场条件下Q235钢表面的生物膜均匀致密,并且紧密地黏附在金属表面。清除腐蚀产物后,无磁场条件下的基体表面呈现较多腐蚀孔和腐蚀裂缝,而有磁场条件下的基体表面则相对平整,说明磁场能有效地抑制SRB对Q235钢的腐蚀。
关键词 硫酸盐还原菌磁场微生物腐蚀失重    
Abstract:The corrosion behavior of Q235 steel in a sulfate-reducing bacteria (SRB) solution in the presence and absence of magnetic field (MF) respectively was investigated by means of mass loss method, electrochemical techniques and surface analysis methods. The results showed that MF could inhibit the corrosion of Q235 steel to certain extent. The measured impedance implied that the MF delayed the formation of SRB biofilms on Q235 steel. SEM observation results indicated that the application of the MF resulted in homogeneous and compact biofilms with high adhesion to the surface of electrode. After removing the corrosion products, the corroded surface of Q235 steel without MF showed many corrosion pits and several corrosion cracks, while that with MF was much more uniform. It implied the application of MF could effectively inhibit the microbiologically influenced corrosion of Q235 steel.
Key wordssulfate-reducing bacteria    magnetic field    microbiologically-influenced corrosion    mass loss
收稿日期: 2013-01-19     
ZTFLH:  O646.6  
基金资助:国家自然科学基金项目 (51171067) 和深圳市基础研发基金项目 (JC201005310696A) 资助
通讯作者: 刘宏芳,E-mail:Liuhf2003@yahoo.com.cn   
作者简介: 李克娟,女,1989年生,硕士生,研究方向为微生物腐蚀与防护及应用电化学

引用本文:

李克娟, 郑碧娟, 陈碧, 刘宏芳. 磁场对Q235钢微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469.
LI Kejuan, ZHENG Bijuan, CHEN Bi, LIU Hongfang. Effect of Magnetic Field on Microbiologically-influenced Corrosion Behavior of Q235 Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 463-469.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I6/463

[1] Liu G Z, Wu J H. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Corros. Prot., 2001, 22(10): 430-433
(刘光洲, 吴建华. 海洋微生物腐蚀的研究进展 [J]. 腐蚀与防护, 2001, 22 (10): 430-433)
[2] Marcus P, Oudar J. Corrosion Mechanisms in Theory and Practice [M]. New York: Marcel Dekker Inc., 1995: 457-499
[3] Liu H F, Huang L, Huang Z, et al. Specification of sulfate reducing bacteria bio-films accumulation effects on corrosion initiation [J]. Mater. Corros., 2007, 58(1): 44-48
[4] Ji W J, Huang H M, Deng A H, et al. Effects of static magnetic fields on the growth and propagation of escherichia coli [J]. Prog. Mod. Biomed., 2009, 9(5): 856-859
(姬文晋, 黄慧民, 邓爱华等. 恒定磁场对大肠杆菌生长繁殖的影响 [J]. 生物医学进展, 2009, 9(5): 856-859)
[5] Kohno M, Yamazaki M, Kimura I, et al. Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli [J]. Pathophysiology, 2000, 7(2): 143-148
[6] Busch K W, Buxdh M A, Parker D H, et al. Studies of a water treatment device that uses magnetic fields [J]. Corrosion, 1986, 42(4): 211-221
[7] Ludek S, Vladimir V, Jan S. Effects of low-frequency magnetic fields on bacteria Escherichia coli [J]. Bioelectrochemistry, 2002, 55: 161-164
[8] Lucia P, Luca U, Roberta D S. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli [J]. Mutat. Res., 2004, 561: 53-62
[9] Tian G, Wei A J, Huo F Y, et al. An experimental study of the magnetic field on metal corrosion [J]. Pipeline Tech. Equip., 2010, 1, 50-52
(田光, 魏爱军, 霍富永等. 磁场对金属腐蚀的实验研究 [J]. 管道技术与设备, 2010, 1, 50-52)
[10] Kaur G, Mandal A K, Nihlani M C, et al. Control of sulfidogenic bacteria in produced water from the Kathloni oilfield in northeast India [J]. Int. Biodeter. Biodegrad., 2009, 63(2): 151-155
[11] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 45-83
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 45-83)
[12] Lin J, Yan Y G, Chen G Z, et al. Effects of SRB biofilm and corrosion product films on corrosion behavior of carbon steel [J]. Electrochemistry, 2006, 12(1): 93-97
(林晶, 阎永贵, 陈光章等. 生物膜和腐蚀产物膜对A3钢的腐蚀作用研究 [J]. 电化学, 2006, 12(1): 93-97)
[13] Miranda E, Bethencourt M, Botana F J, et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oilfield separator [J]. Corros. Sci., 2006, 48: 2417-2431
[14] Gunasekaran G, Chongdar S, Kumar P. Corrosion inhibition of mild steel by acr-obic biofilm [J]. Electrochim. Acta, 2005, 50: 4655-4665
[15] Wang W, Wang J, Xu H B, et al. Microbial methods used in study of microbially- influenced corrosion [J]. Corros. Sci. Prot. Technol., 2007, 19(1): 38-41)
(王伟, 王佳, 徐海波等. 微生物腐蚀研究中微生物学方法和微生物膜的化学分析 [J]. 腐蚀科学与防护技术, 2007, 19(1): 38-41)
[16] Masaaki M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species [J]. J. Biosci. Bioeng., 2006, 101(1): 1-8
[17] Jeffrey R, Melchers R E. Bacteriological influence in the development of iron sulphide species in marine immersion environments [J]. Corros. Sci., 2003, 45(4): 693-714
[18] Li S M, Du J, Liu J H, et al. Corrosion behavior of steel A3 influenced by thiobacillus thiooxidans [J]. Acta Phys.-Chim. Sin 2009, 5(11): 2191-2198
(李松梅, 杜娟, 刘建华等. A3钢在氧化硫硫杆菌作用下的腐蚀行为 [J]. 物理化学学报, 2009, 25(11): 2191-2198)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[9] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[10] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[11] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[15] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.