Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (6): 449-454    
  研究论文 本期目录 | 过刊浏览 |
海水中带锈Q235钢腐蚀电化学参数测定
彭 欣1 王 佳1,2 王金龙1 山 川1 贾红刚3 刘在健1 王海杰1
1. 中国海洋大学化学化工学院 青岛 266100;
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016;
3. 海洋石油工程(青岛)有限公司 青岛 266100
Corrosion Electrochemical Parameters Test of Rusted Carbon Steel in Seawater
PENG Xin1, WANG Jia1,2, WANG Jinlong1, SHAN Chuan1, JIA Honggang3,
LIU Zaijian1, WANG Haijie1
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
2. State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research , Chinese Academy of Sciences, Shenyang 110016, China;
3. Offshore Oil Engineering Co. (Qingdao) LTD., Qingdao 266100, China
全文: PDF(1091 KB)  
摘要: 利用失重法和电化学方法对在海水中浸泡不同时间的Q235钢电极的腐蚀行为和腐蚀速率规律进行了研究。结果表明,对于长期浸泡的Q235钢电极,失重法和电化学方法得到的腐蚀速率结果存在很大差异。利用XRD测定了长期浸泡后锈层成分的变化,发现长期浸泡Q235钢电极锈层中的电化学活性成分β-FeOOH在测试过程中发生还原反应,导致利用电化学方法测得的Q235钢腐蚀速率大于失重法的结果,并且随浸泡时间的延长,这一偏差增大。对长期浸泡Q235钢电极进行电流密度为-25 μA/cm2阴极恒电流预极化处理后发现,随着浸泡时间的延长极化时间也延长,同时,经过预处理之后的Q235钢电极电化学方法测得的腐蚀速率与失重法的结果具有一致的变化规律,表明施加合适的阴极极化预处理能够减小电化学方法与失重法测试结果的偏差。
关键词 Q235钢锈层β-FeOOH腐蚀速率恒电流极化    
Abstract:As it is known that the existence of a rust scale on a steel surface may complicate the electrochemical corrosion process of the steel, thereby it is difficult to accurately measure the corrosion rate of carbon steel by traditional electrochemical methods. In this paper, weight-loss method and different electrochemical tests such as polarization curves (PC), electrochemical impedance spectra (EIS) and linear polarization resistance (LPR) were used to study the corrosion behavior of the Q235 carbon steel immersed in seawater for 1 a. The results show that the corrosion rates measured by both the electrochemical and weight-loss measurement show the same degressive trends during a short immersion period (for about 8 weeks), while those measured by electrochemical measurement turn to increase after 8 weeks' immersion in seawater. The longer the immersion time is, the bigger the deviation occurs for the corrosion rates measured by the two kind methods. It is believed that the rust scale presented on the electrodes had a great influence on its corrosion behavior. The evolution of phase constituents of the corrosion products on the rust steel was characterized by XRD. There is an obvious increasing of β-FeOOH in the corrosion product accumulated on the carbon steel with the immersing time going, and the reductive reaction of β-FeOOH during the electrochemical test process leads an overestimate of the corrosion rate, which caused the deviation between weight loss method and electrochemical tests. In order to solve this problem, the electrode was pretreated by a cathodic galvanostatic polarization with current density of -25 μAcm-2 to counteract the reduction current during the electrochemical test process. After the pre-polarization, the electrochemical measurement results coincided well with weight loss, which means this pre-polarization showed a good calibration of the deviation between the two measurement methods.
Key wordsQ235 steel    rust layer    β-FeOOH    corrosion rate    galvanostatic polarization
收稿日期: 2013-03-29     
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (51131005) 资助
通讯作者: 王佳,E-mail:jwang@ouc.edu.cn   
作者简介: 彭欣,男,1985年生,博士生,研究方向为海水中金属腐蚀与防护

引用本文:

彭欣, 王佳, 王金龙, 山川, 贾红刚, 刘在健, 王海杰. 海水中带锈Q235钢腐蚀电化学参数测定[J]. 中国腐蚀与防护学报, 2013, 33(6): 449-454.
. Corrosion Electrochemical Parameters Test of Rusted Carbon Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 449-454.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I6/449

[1] Emi H, Kumano A, Yamamoto N, et al. A basic study on life assessment of ships and offshore structures [J]. Tech. Bull. Nippon Kaiji Kyokai, 1991, 9: 27-49
[2] Yan M, Huang G Q. Review and expectation on national network for water environment corrosion test in China [J]. Mari. Sci., 2005, 29(7): 73-76
(颜民, 黄桂桥. 中国水环境腐蚀试验站网工作回顾与展望 [J]. 海洋科学, 2005, 29(7): 73-76)
[3] Melchers R E. A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres [J]. Corros. Sci., 2008, 50: 3446-3454
[4] Kuang F, Wang J, Li Y, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel [J]. Electrochim. Acta, 2007, 52: 6084-6088
[5] Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112(3): 844-852
[6] Refait P, Memet J B, Bon C, et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel [J]. Corros. Sci., 2003, 45(4): 833-845
[7] Dünnwald J, Otto A. An investigation of phase transitions in rust layers using raman spectroscopy [J]. Corros. Sci., 1989, 29: 1167-1176
[8] Refait P, Génin J M R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: the formation of akaganeite vs goethite [J]. Corros. Sci., 1997, 39: 539-553
[9] García K E, Morales A L, Barrero C A, et al. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test [J]. Corros. Sci., 2006, 48: 2813-2830
[10] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51(5): 997-1006
[11] Millard S G, Law D, Bungey J H, et al. Environmental influenced on linear polarization corrosion rate measurement in reinforced concrete [J]. NDT & E Int., 2001, 34: 409-417
[12] Zhang W, Wang J, Li Y N, et al. Evaluation of metal corrosion under defective coatings by WBE and EIS technique [J]. Acta Phys.- Chim. Sin., 2010, 26(11): 2941-2950
(张伟, 王佳, 李玉楠等. WBE联合EIS技术研究缺陷涂层下金属腐蚀 [J]. 物理化学学报, 2010, 26(11): 2941-2950)
[13] Liu G Z, Wang J M, Zhang J Q, et al. Effect of electrolytic treatment of ballast water on the corrosion behavior of 316L stainless steel [J]. Acta Metall. Sin., 2011, 47(12): 1600-1604
(刘光洲, 王建明, 张鉴清等. 电解法处理压载水对316L不锈钢腐蚀行为的影响 [J]. 金属学报, 2011, 47(12): 1600-1604)
[14] Andrade C, Keddam M, Nóvoa X R, et al. Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry [J]. Electrochim. Acta, 2001, 46(24/25): 3905-3912
[15] Videm K. Phenomena disturbing electrochemical corrosion rate measurements for steel in alkaline environments [J]. Electrochim. Acta, 2001, 46: 3895-3903
[16] Antony H, Perrin S, Dillmann P H, et al. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts [J]. Electrochim. Acta, 2007, 52(27): 7754-7759
[17] González J A, Miranda J M, Feliu S. Considerations on reproducibility of potential and corrosion rate measurements in reinforced concrete [J]. Corros. Sci., 2004, 46(10): 2467-2485
[18] Zou Y, Zheng Y Y, Wang Y H, et al. Cathodic electrochemical behaviors of mild steel in seawater [J]. Acta Metall. Sin., 2010, 46(1): 123-128
(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为 [J]. 金属学报, 2010, 46(1): 123-128)
[19] Zou Y, Wang J, Zheng Y Y. Electrochemical corrosion behaviors of rusted carbon steel [J]. Acta Phys.- Chim. Sin., 2010, 26(9): 2361-2368
(邹妍, 王佳, 郑莹莹. 锈层下碳钢的腐蚀电化学行为特征 [J]. 物理化学学报, 2010, 26(9): 2361-2368)
[20] Zou Y, Wang J, Zheng Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53(1): 208-216
[21] Lair V, Antony H, Legrand L, et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48: 2050-2063
[22] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56(9): 935-941
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[3] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[4] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[8] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[9] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[11] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[12] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] 郑珉,黄彦良,西方笃,路东柱,张杰,王秀通,温娟,李玉红,刘月妙. Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(5): 398-406.
[14] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[15] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.