Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 397-402    
  研究报告 本期目录 | 过刊浏览 |
土壤中残余尿素对Q235钢微生物腐蚀的影响
李喜明1,张春颜2,朱辉3,孙成1,许进1,鲜俊3,王文斌3,于长坤1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
2. 克拉玛依致信有限责任公司 克拉玛依 834002
3. 新疆油田油气储运公司 克拉玛依 834002
EFFECT OF UREA ON MICROBIAL CORROSION BEHAVIOR OF Q235 STEEL IN SOIL
LI Ximing1, ZHANG Chunyan2, ZHU Hui3, SUN Cheng1, XU Jin1, XIAN Jun3, WANG Wenbin3, YU Changkun1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Kalamayi Zhixin Co. Ltd, Kalamayi 834002
3. Oil-gas Storage and Transportation Company of Xinjiang Oilfield, Kalamayi 834002
全文: PDF(1938 KB)  
摘要: 

利用电化学阻抗谱、动电位扫描测试技术、扫描电镜以及表面能谱分析方法在湿度为10%的土壤中,研究了尿素(0.05 mass%)对Q235钢微生物腐蚀的影响。结果表明,在接菌土壤中尿素对Q235钢腐蚀起加速作用,在灭菌土壤中尿素对Q235钢腐蚀起抑制作用。在接菌土壤中,试验前期阻抗谱上出现一个时间常数;5 d后变为两个时间常数,试件表面已生成一层腐蚀产物。试验后期出现Warburg阻抗,表明此时电极反应受扩散控制,并且接菌土壤中试样的腐蚀产物中存在S元素。

关键词 Q235钢尿素电化学阻抗谱硫酸盐还原菌    
Abstract

The effect of urea (0.05 mass %) on the microbial corrosion of Q235 steel in soil with humidity at 10 % was investigated by electrochemical impendence spectroscopy(EIS), polarization curve, scanning electron microscopy (SEM) and EDX. The results showed that urea accelerated carbon steel corrosion in soil with SRB yet prevented the corrosion of steel in sterile soil. The results of EIS showed that in inoculated soil only one time constant appeared in primary experimental period, two time constants appeared after 5 d and corrosion product formed on the steel surface. Warburg impedance was found at the later stage, which indicated that the process was controlled by concentration polarization. Sulfur element was detected in corrosion product of carbon steel in soil with SRB by EDX, which confirmed the effects of SRB on the corrosion.

Key wordsQ235 steel    urea    EIS    SRB
收稿日期: 2011-09-26     
ZTFLH:  TG172.4  
基金资助:

国家自然科学基金(50971128,51161001)和国家科技基础条件平台建设项目(2005DKA10400-CT-2-02)资助

通讯作者: 孙成     E-mail: chengsun@imr.ac.cn
Corresponding author: SUN Cheng     E-mail: chengsun@imr.ac.cn
作者简介: 李喜明,女,1986年生,硕士,研究方向为土壤腐蚀

引用本文:

李喜明,张春颜,朱辉,孙成,许进,鲜俊,王文斌,于长坤. 土壤中残余尿素对Q235钢微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 397-402.
LI Ximing, ZHANG Chunyan, ZHU Hui, SUN Cheng, XU Jin, XIAN Jun, WANG Wenbin, YU Changkun. EFFECT OF UREA ON MICROBIAL CORROSION BEHAVIOR OF Q235 STEEL IN SOIL. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 397-402.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/397

[1] Booth G H, Cooper A W,Cooper P M. Criteria of soil aggressiveness towards buried metal II.Assessment of various soils [J]. Br. Corros. J., 1967, 2: 109-113

[2] Li C B. Surveying techniques for underground pipelines and soil corrosivity evaluation method[J]. Soils, 1998, 12(4): 205-208

    (李成保.地下管线腐蚀的勘测技术与土壤腐蚀性的评价方法[J]. 土壤, 1998, 12(4):205-208)

[3] Wang W H, Shen S M, Yu X C. Review on research methods of soil corrosion for buried pipeline steels [J]. J. Nanjing Univ.Technol. (Nat. Sci. Ed.), 2008, 30(4): 105-110

    (王文和, 沈士明, 於孝春. 埋地管道钢土壤腐蚀研究方法进展 [J].南京工业大学学报(自然科学版), 2008, 30(4): 105-110)

[4] Wang G Y. Corrosion and Protection in Nature Environment [M]. Beijing: Chemical Industry Press, 1997

    (王光雍.自然环境的腐蚀与防护[M]. 北京: 化学工业出版社, 1997)

[5] Wang Q. Corrosion and protection of underground pipelines [M]. Xining: The People$^{\prime}$s Press of Qinghai, 1984

    (王强. 地下金属管道的腐蚀与阴极保护[M]. 西宁: 青海人民出版社, 1984)

[6] Sun C, Xu J, Wang F H. Effect of sulfate reducing bacteria on corrosion of stainless steel 1Cr18Ni9Ti in soils containing chloride ions [J]. Mater. Chem. Phys., 2011, 126: 330-336

[7] Zhang L J. The Selected Information of the National Soil Corrosion Test Networks and Stations (2nd)[M]. Shanghai: Shanghai Jiao Tong University Press, 1992

    (张良杰,全国土壤腐蚀试验网站资料选编(第二集) [M]. 上海: 上海交通大学出版社,1992)

[8] Sun C, Han E H. Effects of SRB on corrosion of Q235 steel during vaporation of water in soil [J]. J. Chin. Soc. Corros. Prot.,2005, 25(5): 307-311

    (孙成, 韩恩厚.土壤湿度变化对Q235钢的硫酸盐还原菌腐蚀影响[J]. 中国腐蚀与防护学报,2005, 25(5): 307-311)

[9] Liu W X, Sun C. Effects of different cathodic ions on the corrosion of carbon steel in soils [J]. Total Corros. Contr. 2006,20(6): 10-13

    (刘文霞, 孙成. 土壤中阴离子对碳钢腐蚀的影响[J].全面腐蚀控制,2006, 20(6): 10-13)

[10] Liu H F, Wang M F, Xu L M, et al. The role of Ca2+ on the microbiologically induced corrosion of carbon steel [J]. J.Chin. Soc. Corros. Prot., 2004, 24(1): 45-51

     (刘宏芳, 汪梅芳, 许立铭等. 钙离子对碳钢微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2004,24(1): 45-51)

[11] Ju X T, Zhang F S. Nitrate accumulation and its implication to environment in north China [J]. Ecology Environ.,2003, 12(1): 24-28

     (巨晓棠, 张福锁.中国北方土壤硝态氮的累积及其对环境的影响[J]. 生态环境, 2003, 12(1):24-28)

[12] Mozheiko F F, Potkina T N, Goncharik I. Effect of inhibitors on corrosion resistance of carbon steel in suspensed liquid combined fertilizer [J]. Rus. J. Appl. Chem., 2008, 81(9):1705-1709

[13] Li Y, Zhang T, Wang F H. Corrosion behavior of AZ91D magnesium alloy in hand sweat II. Inhibiting mechanism of urea on magnesium alloy AZ91D in hand sweat [J]. J. Chin. Soc. Corros.Prot., 2004, 24(6): 334-339

     (李瑛, 张涛, 王福会.AZ91D镁合金手汗腐蚀机理研究II. 手汗液中尿素对AZ91D腐蚀的缓蚀机制[J].中国腐蚀与防护学报, 2004, 24(6): 334-339)

[14] Li M C, Lin H C, Cao C N. Study of soil corrosion of carbon steel by electrochemical impendence spectroscopy (EIS) [J].J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117

     (李谋成,林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J].中国腐蚀与防护学报, 2000, 20(2): 111-117)

[15] Wang W. Surface analysis methods used in microbiologically induced corrosion study [J]. J. Chin. Soc. Corros.Prot., 2007, 27(1): 60-64

     (王伟.微生物腐蚀研究方法中的表面分析技术[J]. 中国腐蚀与防护学报, 2007,27(1): 60-64)

[16] Liu J, Fan H B, Xu H P, et al. Corrosion electrochemical behavior of carbon steel in microbiological medium [J].Electrochemistry, 2002, 8(2): 186-190

     (刘靖, 范洪波,徐海平等. 碳钢在微生物腐蚀介质中的腐蚀电化学行为[J], 电化学, 2002,8(2): 186-190)

[17] Cao C N. Principles of Corrosion Electrochemistry[M].Beijing: Chemical Industry Press, 2008

     (曹楚南.腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)

[18] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci.,2008, 50: 1169-1183

[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[10] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[11] 田龙标,朱志平,张春雷,喻强,杨磊. 尿素对燃煤电厂水冷壁管15CrMo钢腐蚀特性研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 114-122.
[12] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.