Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (4): 285-290    
  研究报告 本期目录 | 过刊浏览 |
铸造镍基合金K444在900℃空气中的长期氧化行为
郭永安1,李柏松2,赖万慧1,郭建亭1,周兰章1
1. 中国科学院金属研究所 沈阳 110016;
2. 沈阳工业大学材料科学与工程学院 沈阳 110059
OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM
GUO Yong'an1, LI Bosong2, LAI Wanhui1,  GUO Jianting1, ZHOU Lanzhang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110059
全文: PDF(3688 KB)  
摘要: 用热重法研究镍基高温合金K444在900℃下氧化1000 h的动力学。结果表明,K444合金氧化动力学遵从抛物线规律,以X射线衍射、扫描电镜和能谱分析及电子探针成分分析测定氧化膜的组成,结果表明氧化膜由多层组成,外层为TiO2,内层以Cr2O3为主还包括内氧化层和贫γ'层。观察到沿晶界偏聚的碳化物氧化,提出了氧化机制。
关键词 镍基高温合金高温氧化内氧化碳化物选择氧化氧化机制    
Abstract:The oxidation kinetic of a Ni-based superalloy K444 at 900℃ in air was studied by thermo gravity (TG) method. The results show that oxidation kinetic of the K444 obeys the parabolic law. The oxide rate constant of the initial stage is greater than steady-state stage, and the turning point is 25 hours. The composition of oxide layer were examined by X-ray diffraction, scanning electron microscopy, energy spectrum analysis and electron probe micro-analyzer. The oxide scale contains several layers: the outer layer of TiO2 mainly; the intermediate layer of Cr2O3 and internal oxidation layer. The growth of oxide scale is controlled by diffusion. The grain boundary segregation and the oxidation of carbide were also observed.
Key wordsNi-based superalloy    high-temperature oxidation internal oxidation    carbide selective oxidation    oxidation mechanism
收稿日期: 2011-08-25     
ZTFLH: 

TG142.7

 
通讯作者: 周兰章     E-mail: Lzz@imr.ac.cn.
Corresponding author: ZHOU Lanzhang     E-mail: Lzz@imr.ac.cn.
作者简介: 郭永安,男,1981年生,工程师,硕士,研究方向为高温合金和镍铝金属间化合物

引用本文:

郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
GUO Yong-An. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM. J Chin Soc Corr Pro, 2012, 32(4): 285-290.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I4/285

[1] Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications[J]. Acta Mater., 2011, 59: 225-240

[2] Gordon A P, Trexler M D, Neu R W, et al. Corrosion kinetics of a directionally solidified Ni-base superalloy[J]. Acta Mater., 2007, 55: 3375-3385

[3] Das D K, Singh Y, Joshi S V. High-temperature oxidation behaviour of directionally solidified nickel-base superalloy CM-247LC[J]. Metal. Sci. Technol., 2003, 19: 695-708

[4] Amis C T, Stollof N S, Hagel W C. (Eds). High-Tem-perature Oxidation in Superalloys (II)[M]. John Wiley and Sons, 1987: 293-326

[5] Birks N, Meier G H, Pettit F S. Forming continuous alumina scales to protect superalloys[J]. JOM, 1994, Dec: 42-46

[6] Smialek J L, Barrett C A, Schaeffe J C. Design of Oxidation Resistance[M]. ASM Handbook Vol. 20. Materials Selection and Design. Metal Park, OH. International, 1997: 582-602

[7] Abe F, Araki H, Yashida H. et al. The role of aluminum and titanium on oxidation process of a nickel-base superalloy in steam at 800-900℃[J]. Oxid. Met., 1987, 27(1/2): 21-26

[8] Chen J H, Rogers P M, Little J A. Oxidation behaviour of chromia-forming commercial nickel-base superalloy[J]. Oxid. Met., 1997, 47(5/6): 381-410

[9] Gobel M, Rahmel A, Schutze M. The cyclic-oxidation behaviour of serial nickel-base single-crystal superalloys without and with coatings[J]. Oxid. Met., 1994, 41(3/4): 271-300

[10] Litz J, Rahmel A, Schorr M. Selective carbide oxidation and internal nitridation of the Ni-base superalloy IN738 LC and IN939 in air[J]. Oxid. Met., 1988, 30(1/2): 95-105

[11] Lillerud K P, Kafstad P. On high temperature oxidation of chromium.I.Oxidation of annealed, thermal etched chromium at 800-1100℃[J]. Inorg. Org. Sparators, 1980, 129(11): 2397-2409

[12] Calvarin G, Molins R, Huntz A M. Oxidation mechanism of Ni-20Cr foils and its relation to the oxide-scale microstructure[J]. Oxid. Met., 2000, 53(1/2): 25-48

[13] Hagel W C, Seybolt A U. Cation diffusion in Cr2O3[J]. J. Eletrochem. Soc., 1961, Dec: 1146-1152

[14]Wood G C, Stott F H, Whittle D P, et al. The high-temperature internal oxidation and intergranular oxidation of nickel-chromium alloys[J]. Corr. Sci., 1983, 23(1): 9-25

[15] Rowec S M. Defects and Diffusion in Solids on Introduction[M]. Amsterdam-Oxford-New York: Elsevier Scientific Publication Company, 1974: 183-184

[16] Findley K O, Evans J L, Saxena A. A critical assessment of fatigue crack nucleation and growth models for Ni- and Ni, Fe-base superalloys[J]. Int. Mater. Rev., 2011, 56(1): 49-71
[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[4] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[5] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[6] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[7] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[8] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[9] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[10] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[13] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[14] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[15] 袁军涛, 王文, 朱圣龙, 王福会. Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.