Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 478-482    
  研究报告 本期目录 | 过刊浏览 |
5种氨基酸对铁缓蚀机理的分子动力学模拟
石文艳1,2,夏媛1,雷武2,夏明珠2,王风云2,张其平3, 张跃华3
1. 盐城工学院化学与生物工程学院 盐城 224003
2. 南京理工大学工业化学研究所 南京 210094
3. 南通大学化学化工学院 南通 226007
MOLECULAR DYNAMICS SIMULATION OF CORROSION INHIBITING MECHANISM OF IRON BY FIVE KINDS OF AMINO ACIDS
SHI Wenyan1,2, XIA Yuan1, LEI Wu2, XIA Mingzhu2, WANG Fengyun2, ZHANG Qiping3, ZHANG Yuehua3
1. Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng Jiangsu 224051
2. Institute of Industrial Chemistry, Nanjing University of Science & Technology, Nanjing Jiangsu 210094
3. College of Chemistry and Chemical Engineering, Nantong University, Nantong Jiangsu 226007
全文: PDF(840 KB)  
摘要: 用分子动力学方法模拟计算了甘氨酸、亮氨酸、天冬氨酸、精氨酸及蛋氨酸5种氨基酸类缓蚀剂与Fe(100)晶面、(110)晶面及(111)晶面在酸性条件下的相互作用。结果发现,5种氨基酸与Fe的3个晶面结合能的排列顺序由小到大均为甘氨酸<亮氨酸<天冬氨酸<精氨酸<蛋氨酸;同一氨基酸分子与Fe(111)晶面结合能最大,与Fe(110)晶面结合能次之,与Fe(100)晶面结合能最小。对体系各种相互作用以及对关联函数g(r)的分析表明,结合能主要由库仑相互作用能和范德华能提供。金属Fe原子与氨基酸中的N、 O及S原子形成了配位键,与Fe晶面结合的氨基酸分子构型发生扭曲变形,但形变能均远小于相应的非键相互作用能。
关键词 氨基酸缓蚀机理分子动力学对关联函数    
Abstract:The interactions between five kinds of amino acid corrosion inhibitors, i.e. glycin、leucine、aspartic acid、arginine and methionine and (100), (110), (111) crystal surfaces of Fe have been simulated by molecular dynamics. The results show that the orders of binding energy for five kinds of amino acids with three Fe crystal surfaces are as follows: glycing(r) of all systems indicates that binding energies are mainly provided by coulomb interaction energy and Van der Waals energy. Coordination bonds are formed between the metal iron atoms and the nitrogen、oxygen and sulfur atoms in amino acids. The configurations of amino acids have been deformed during their combining with Fe crystal surfaces, but the deformation energies of amino acids are far less than respective nonbonding energies.  
Key wordsamino acid    iron    corrosion inhibition mechanism    molecular dynamics    pair correlation functions
收稿日期: 2011-03-22     
ZTFLH: 

TQ463

 
基金资助:

国家自然科学基金项目(20906052),江苏科技支撑计划(BE2011835),南京理工大学自主科研专项(2011-YBX65),盐城工学院开放项目(XKY2011004)和盐城工学院应用基础研究项目(XKR2011005)资助

通讯作者: 王风云     E-mail: wangfywater@yahoo.com.cn
Corresponding author: WANG Fengyun     E-mail: wangfywater@yahoo.com.cn
作者简介: 石文艳,女,1980年生,讲师,硕士生,研究方向为水处理药剂性能评定及机理研究

引用本文:

石文艳,夏媛,雷武,夏明珠,王风云,张其平, 张跃华. 5种氨基酸对铁缓蚀机理的分子动力学模拟[J]. 中国腐蚀与防护学报, 2011, 31(6): 478-482.
DAN Wen-Yan, YAN Yuan, LEI Wu, YAN Meng-Zhu, YU Feng-Yun, ZHANG Ji-Beng, ZHANG Ti-Hua. MOLECULAR DYNAMICS SIMULATION OF CORROSION INHIBITING MECHANISM OF IRON BY FIVE KINDS OF AMINO ACIDS. J Chin Soc Corr Pro, 2011, 31(6): 478-482.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/478

[1] Wu W M, Lu M X, Cheng M Y, et al. Inhibition performance of amino acid for steel in sulfuric acid solution [J]. Corros.Prot., 2008, 29 (12): 727-741

    (吴伟明, 路民旭, 程明焱等.硫酸介质中氨基酸对钢的缓蚀性能 [J]. 腐蚀与防护, 2008, 29 (12):727-741)

[2] Ashassi-Sorkhabi H, Ghasemi Z, Seifzadeh D. The inhibition effect of some amino acids towards the corrosion of aluminum in 1 M HCl+1 M H2SO4 solution [J]. Appl. Surf. Sci., 2005,225(1/4): 408-418

[3] Zerfaoui M, Oudda H, Hammouti B, et al. Inhibition of corrosion of iron in citric acid media by amino acids[J]. Prog. Org.Coat., 2004, 51: 134-138

[4] Zhang S G, Chen Y, Wang F Y. Molecular dynamics simulation of interaction between cuprous oxide crystal and benzotriazole derivatives [J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 348-353

    (张曙光, 陈瑜, 王风云.苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟 [J].中国腐蚀与防护学报, 2007, 27(6): 348-353)

[5] Zhang S G, Chen Y, Wang F Y. Molecular dynamics simulation of the corrosion inhibition mechanism of copper by benzotriazole and its carboxylate derivatives [J]. Acta Chim. Sin., 2007, 65(20):2235-2242

    (张曙光, 陈瑜, 王风云.苯并三氮唑及其羧酸酯衍生物对铜缓蚀机理的分子动力学模拟研究 [J].化学学报, 2007, 65(20): 2235-2242)

[6] Tang Y M, Yang X Y, Yang W Z. A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1, 3, 4-thiadiazole: Polarization, EIS and molecular dynamics simulations [J]. Corros. Sci., 2010, 52:1801-1808

[7] Materials Studio 3.0, Discover/Accelrys Software Inc., San Diego, California, 2004.

[8] Sun H. Compass: An ab initio force field optimized for condensed phase application, overview with detail on alkane and benzene compounds [J]. J. Phys. Chem. 1998, 102B, 7338-7364

[9] Sun H,Ren P, Fried J R. The compass force field: parameterization and validation for phosphazenes [J]. Comput. Theor. Polym. Sci., 1998, 8(1/2), 229-246

[10] Berendsen H J C,Postma J P M,van Gunsteren W F. Molecular dynamics with coupling to an external bath [J]. J. Chem.Phys., 1984, 81, 3684-3690

[11] Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987

[12] Lashgari M, Arshadi M R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate and electric field effects [J]. Chem. Phys., 2004, 299: 131-137

[13] Oguzie E E. Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract [J]. Corros.Sci., 2007, 49: 1527-1539

[14] Frenkel & Smit. Translated by Wang W H. Molecular simulation-From Algorithms to Applications[M]. Beijing: Chemical Industry Press, 2002

     (Frenkel & Smit. 汪文川译.分子模拟--从头算法到应用[M]. 北京: 化学工业出版社, 2002)
[1] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[7] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[8] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[9] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[10] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[11] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[12] 李伟,杜艳霞,姜子涛,路民旭. 电气化铁路对埋地管道交流干扰的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[13] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[14] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[15] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.