Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (1): 72-75    
  研究报告 本期目录 | 过刊浏览 |
Cu在BMIMBF4离子液体中的溶解性
周丹桂,华一新,张启波,董铁广
昆明理工大学冶金与能源工程学院 昆明 650093
DISSOLUTION OF Cu IN BMIMBF4  IONIC LIQUID
ZHOU Dangui,HUA Yixin, ZHANG Qibo, DONG Tieguang
Faculty of Metallurgy and Energy Engineering,Kunming University of Science and Technology,Kunming 650093
全文: PDF(449 KB)  
摘要: 在不同氧分压和温度下,研究Cu片在BMIMBF4离子液体中的溶解速率,并测定Cu2+在BMIMBF4离子液体中的饱和浓度。结果表明,Cu必须有氧存在才能溶解在BMIMBF4离子液体中,且溶解速率随氧分压和温度的增加而加快。根据实验数据得到在25℃~70℃和2.10×104 Pa 的氧分压下,Cu溶解速率的表观活化能为21.76 kJ/mol,并建立Cu在 BMIMBF4离子液体中溶解的速率方程。
关键词 Cu溶解BMIMBF4离子液体氧分压    
Abstract:Dissolution characteristic of Cu in BMIMBF4 ionic liquid under different oxygen partial pressures and temperatures was investigated, and the saturation concentrations of Cu2+ in BMIMBF4 were also measured. The experimental results showed that Cu can only be dissolved in BMIMBF4 in the presence of oxygen and the dissolution rate of Cu2+ in BMIMBF4 improved with increase in the oxygen partial pressure and temperature. In addition, according to the experimental data, The value of apparent activation energy was found to be \linebreak21.76 kJ/mol in the temperature range from 25℃ to 70℃ under the oxygen partial pressure of 2.10×104 Pa. The dissolution rate equation of Cu in BMIMBF4 was obtained.
Key wordsCu    dissolution    BMIMBF4 ionic liquid    oxygen partial pressure
收稿日期: 2009-09-02     
ZTFLH: 

TQ153.14

 
基金资助:

国家自然科学基金项目(50564006)和云南省自然科学基金重点项目(2005E0004Z)资助

通讯作者: 华一新      E-mail: huayixin@gmail.com
Corresponding author: HUA Yixin     E-mail: huayixin@gmail.com
作者简介: 周丹桂,女,1983年生,硕士,研究方向为冶金物理化学

引用本文:

周丹桂,华一新,张启波,董铁广. Cu在BMIMBF4离子液体中的溶解性[J]. 中国腐蚀与防护学报, 2011, 31(1): 72-75.
ZHOU Dan-Gui. DISSOLUTION OF Cu IN BMIMBF4  IONIC LIQUID. J Chin Soc Corr Pro, 2011, 31(1): 72-75.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I1/72

[1] Seddon K R. Ionic liquids: a taste of the future [J]. Nat. Mater., 2003, 2(6): 363-365

[2] Zhao D B, Wu M, Kou Y, et al.Ionic liquids: applications in catalysis [J]. Catal Today, 2002,74(1-2): 157-189

[3] Zhao H, Xia S Q, Ma P S. Use of ionic liquids as  green  solvents for extractions [J]. J. Chem. Technol.Biotechnol., 2005, 80: 1089-1096

[4] Uerdingen M, Treber C, Balser M.Corrosion behaviour of ionic liquids [J]. Green Chem., 2005, 7: 321-325

[5] Welton T. Room-temperature ionic liquids-solvents for synthesis and catalysis [J]. Chem. Rev., 1999, 99: 2071-2084

[6] Wasserscheid P, Keim W. Ionic liquids-new solutions for transition metal catalysis [J]. Angew. Chem. Int. Ed., 2000, 39: 3772-3789

[7] Li R X. Green Solvents-Synthesis and Applications of Ionic Liquids [M]. Beijing: Chemistry Industry Press, 2004

    (李汝雄. 绿色溶剂-离子液体的合成与应用 [M]. 北京: 化学工业出版社, 2004: 10)

[8] Perissi I, Bardi U, Caporali S, et al. High temperature corrosion properties of ionic liquids [J]. Corros. Sci., 2006, 6: (12-14)

[9] Sheldon R. Catalytic reactions in ionic liquids [J]. Chem.Commun., 2001, 23: 2399-2407

[10] Husson-Borg P, Majer V, Costa Gomes M F.Solubilities of oxygen and carbon dioxide in buty1 methylimidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure [J]. J. Chem. Eng. Data, 2003, 48(3): 480-485

[11] Fuller J, Carlin R T, el al. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties [J]. J. Electrochem.Soc., 1997, 14: 3881-3885

[12] Chen Y H, Zhang S J, Yuan X L, et a1. Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids [J]. Thermochim. Acta., 2006, 441(1): 42-44

[13] Deng Y Q. Ionic Liquid-Property, Preparation and Applications of Ionic Liquids [M]. Beijing: China Petrochemical Press, 2006, 7, 13-17

     (邓友全. 离子液体-性质、制备与应用 [M]. 北京: 中国石化出版社, 2006, 7, 13-17)

[14] Jacquemin J, Costa Gomes M F, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric [J]. J. Chem. Thermodyn., 2006, 38(4):490-502

[15] Liu Y Z, Xiao L P, Zhang K, et al. Electrochemical deoxidize capability of 2-nitrochlorobenzene in BMIMBF4-H2O [J].Chem. J. Chin. Univ., 2008, 10: 2059-2064

     (柳英姿, 肖丽萍, 张凯等.离子液体BMIMBF4-H2中邻氯硝基苯的电化学还原性能 [J].高等学校化学学报, 2008, 10: 2059-2064)

[16] Andrew P, Abbott K, McKenzie J. Application of ionic liquids to the electrodeposition of metals [J]. Phys. Chem. Chem. Phys., 2006, 8, 4265-4279

[17] Li X, Keith E J. Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquids [J]. J. Electrochem. Soc., 2003,150(6): E307-E311

[18] Yang K. Electrodeposition of Cu from Cu(BF4)2-[bmim]BF4 and CuSO4-H2O-[bmim]BF4 [D]. Yunnan: Kunming University of Science and Technology, 2007,4, 20

     (杨坤. 铜在Cu(BF4)2-[bmim]BF4及CuSO4-H2O-[bmim] BF4体系中的电沉积研究 [D]. 云南: 昆明理工大学, 2007, 4, 20)

[19] NuLi Y, Yang J, Wang P.Electrodeposition of magnesium film from BMIMBF4 ionic liquid [J].Appl., Surf. Sci., 2006, 252: 8086-8090

[20] Wang P, NuLi Y, et al. Mixed ionic liquid as electrolyte for reversible deposition and dissolution of magnesium [J]. Surf. Coat. Technol., 2006, 201:3783-3787

[21] Roberta B, Stefano C, Alessandro L, et al. Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths [J]. Surf.Coat. Technol., 2007, 201: 9485-9490
[1] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[2] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[4] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[5] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[6] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[7] 郭娜, 类延华, 刘涛, 常雪婷, 尹衍升. 植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[8] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[9] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[10] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[11] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[12] 左翔,蒋裕丰,迟挺,胡鑫,曹冬梅,蔡烽. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[13] 冯林,王燕华,钟莲,王佳,李爱娇,金晓晓. 短期贮存对金属铜腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 375-380.
[14] 闫涛,宋振纶,杨丽景,肖涛,侯利锋. 新喀里多尼亚弧菌对Cu在人工海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 157-164.
[15] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.