Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (2): 107-113    
  研究报告 本期目录 | 过刊浏览 |
Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究
李朝兴1;李劲风1;2;BIRBILIS Nick3;贾志强1;郑子樵1;2
1. 中南大学材料科学与工程学院 长沙 410083
2. 中南大学有色金属材料科学与工程教育部重点实验室 长沙 410083
3. ARC Centre of Excellence for Design in Light Metals; Department of Materials Engineering; Monash University; 3800 Australia
SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM
LI Chaoxing1; LI Jinfeng1;2; BIRBILIS Nick3; JIA Zhiqiang1; ZHENG Ziqiao1;2
1. School of Materials Science and Engineering; Central South University; Changsha 410083
2. Key Laboratory of Nonferrous Metal; Materials Science and Engineering;Ministry of Education; Central South University; Changsha 410083
3. ARC Centre of Excellence for Design in Light Metals; Department of Materials Engineering;Monash University; 3800. Australia
全文: PDF(2759 KB)  
摘要: 

通过测定Al-Mg-Si合金晶界各组成相的极化曲线及不同Mg/Si比 Al-Mg-Si合金晶界组成相(Al-Mg2Si及Al-Mg2Si-Si)间的动态电化学偶合行为,研究了不同Mg/Si比Al-Mg-Si合金的晶间腐蚀机理。研究表明,晶界Si电位比其边缘Al基体正,在整个腐蚀过程中作为阴极导致其边缘Al基体的阳极溶解。晶界Mg2Si电位比其边缘Al基体负,在腐蚀初期将作为阳极而发生阳极溶解;由于Mg2Si中活性较高元素Mg的优先溶解,不活泼元素Si富集,致使Mg2Si电位正移,甚至与其边缘Al基体发生极性转换,导致其边缘Al基体的阳极溶解。Mg/Si>1.73的Al-Mg-Si合金晶界只存在不连续分布的含Mg、Si的析出相,不能在晶界形成连续腐蚀通道,合金不表现出晶间腐蚀敏感性。Mg/Si<1.73的Al-Mg-Si 合金晶界同时析出含Mg、Si析出相和Si粒子;腐蚀首先萌生于 Mg2Si相;而后,Si粒子一方面导致其边缘无沉淀带严重的阳极溶解,另一方面通过加速Mg2Si和晶界无沉淀带的极性转换,协同促进了Mg2Si边缘无沉淀带的阳极溶解,即腐蚀沿晶界Si粒子及Mg2Si粒子边缘的无沉淀带发展。Si粒子促进了腐蚀的发展,导致合金表现出严重的晶间腐蚀敏感性。

关键词 Al-Mg-Si合金晶间腐蚀腐蚀机理    
Abstract

The potentiodynamic scanning curves and the electrochemical coupling behaviors of constituent phases at the grain boundary of Al-Mg-Si alloy were investigated. The corrosion mechanism of Al-Mg-Si alloys different ratio of Mg to Si was analyzed. The results show that the Si particle is cathodic to the Al-base and causes the anodic dissolution of Al-base at its adjacent periphery. At the beginning, the precipitate of Mg2Si is anodic to the Al-base and corrosion occurs on its surface. However, during its corrosion process, its potential moves to a positive direction with immersion time increasing, due to the preferential dissolution of Mg and the enrichment of Si, which makes Mg2Si become cathodic to Al- base and leads to the anodic dissolution of the Al-base at its adjacent periphery at a later stage. At the grain boundary of Al-Mg-Si alloys with a ratio of Mg to Si higher than 1.73, the Mg-and-Si contained precipitates are distributed discontinuously, resulting in that they are not sensitive to intergranular corrosion. There exist Mg-and-Si-contained precipitates and Si particles at the grain boundary of Al-Mg-Si alloys with a ratio of Mg to Si less than 1.73, corrosion occurs firstly on the surface of Mg2Si. Meanwhile, the Si particle leads to the great anodic dissolution of the precipitate-free-zone(PFZ) at its adjacent periphery. The Si particle also accelerates the preferential dissolution of Mg in Mg2Si precipitate, expediting the polarity transformation between Mg2Si and the PFZ. As a result, the corrosion development along the PFZ at the adjacent of Mg2Si particle is enhanced.

Key wordsAl-Mg-Si alloys    intergranular corrosion    corrosion mechanism
收稿日期: 2008-12-17     
ZTFLH: 

TG171

 
通讯作者: 李劲风     E-mail: lijinfeng@mail.cus.edu.cn
Corresponding author: LI Jinfeng     E-mail: lijinfeng@mail.cus.edu.cn
作者简介: 李朝兴,男,1984年生,硕士生,研究方向为铝合金的腐蚀

引用本文:

李朝兴;李劲风;BIRBILIS Nick;贾志强;郑子樵. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
LI Zhao-Xin, LI Jin-Feng, BIRBILIS NICK, GU Zhi-Jiang, ZHENG Zi-Qiao. SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM. J Chin Soc Corr Pro, 2010, 30(2): 107-113.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I2/107

[1] Osaki S H, Kinoshita K, Naganuma D.Intergranular corrosion and SCC properties of Al-Mg-Si alloy sheets [J]. J. Inst. Light Met., 2003, 53(4): 157-162
[2] Es-Said O S,Frazier W E, Lee E W. The effect of retrogression and reaging on the properties of the 7249 aluminum alloy [J]. JOM. 2003, (1): 45-48
[3] Zheng Z Q, Li H Y, Mo Z M. Retrogression and reaging treatment of a 7055 type aluminum alloy [J]. Chin. J. Nonferrous Met., 2001, 11(5): 771-775
    (郑子樵, 李红英, 莫志民. 一种7055型铝合金的RRA处理 [J]. 中国有色金属学报,2001, 11(5): 771-775)
[4] Ru J G, Yi L N,Zhang L S. A study of the ultra high strength aluminium alloy heat treatment process [J]. J.Mater Eng., 1999, (2): 37-39
    (汝继刚, 伊琳娜, 张禄山. 超高强铝合金热处理工艺研究 [J]. 材料工程, 1999, (2): 37-39)
[5] Pzark J K, Ardell A J. Microstructures of the commercial 7075 Al,alloy in the T651 and T7 tempers [J]. Metall. Trans., 1983, 14: 1957-1965
[6] Meng Z F, Zheng Y, Long H W, et al, Hardness changes of Al-Zn-Mg alloy during retrogression and reaging [J]. Acta Metall. Sin., 1997, 33(5): 479-484
    (孟昭富, 郑勇, 龙厚文等. 再时效-回归-再时效处理过程中Al-Zn-Mg 系合金硬度的改变 [J]. 金属学报, 1997, 33(5): 479-484)
[7] Zeng Y, Yin Z M, Zhu Y Z, et al. Effect of RRA on microstructure and properties of new type ultra high strength aluminum alloy [J]. Chin. J. Nonferrous Met., 2004, 14(7): 1188-1194
    (郑渝, 尹志民, 朱远志等. RRA处理对超高强铝合金微观组织和性能的影响 [J]. 中国有色金属学报, 2004, 14(7): 1188-1194)
[8] Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium ally with various aging treatements [J]. Trans.Nonferrous Met. Soc. China, 2008, 18: 755-762
[9] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Fabrication (2nd) [M]. ChangSha: Central South University Press, 2000: 132
    (王祝堂, 田荣璋. 铝合金及其加工手册(第二版)[M]. 长沙:中南大学出版社,2000:132)
[10] Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys [J]. J.Electrochem. Soc., 2005, 152(4), B140-B151
[11] Li J F, Zheng Z Q, Li S C, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J]. Corros. Sci., 2007, 49: 2436-2449
[12] Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase(Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 1997, 144(8): 2621-2628
[13] Shao M H, Fu Y, Hu R G, et al. A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique [J]. Mater. Sci. Eng., 2003, A344: 323-327
[14] Li J F, Zheng Z Q, Jiang N, et al. Study on localized corrosion mechanism of 2××× series Al alloy containing S(Al2CuMg) and θ′(Al2Cu) precipitates in 4.0% NaCl solution at pH=6.1 [J]. Mater. Chem.Phys., 2005, 91(2-3): 325-329
[15] Mizuno K, Nylund A, Olefjord I. Surface reactions during pickling of an aluminum-magnesium-silicon alloy in phosphoric acid [J]. Corros. Sci., 2001, 43(2): 381-396
[16] Li J F, Zheng Z Q, Ren W D, et al. Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al-Cu-Li alloys [J]. Trans. Nonferrous Met. Soc. China,2006, 16: 1268-1273
[17] Wang Z H, Zhou G Y. Controlling composition of 6063 aluminium alloy based on production process and material application [J]. Light Alloy Fabr. Technol., 2000, (12): 31-32
     (王宗和, 周光永. 根据工艺和材料用途控制6063铝合金的成分 [J]. 轻合金加工技术, 2000, (12): 31-32

[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[6] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[7] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[8] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[9] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[10] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[11] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[12] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[13] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[14] 孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[15] 许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.