Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 83-88    
  研究报告 本期目录 | 过刊浏览 |
阴极极化对921A钢海水中氢脆敏感性的影响
常娥1;2;闫永贵2;李庆芬3;马力2
1. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2. 中船重工725所 海洋腐蚀与防护国防科技重点实验室 青岛 266071
3. 哈尔滨工程大学机电工程学院 哈尔滨 150001
EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF 921A STEEL IN SEA WATER
CHANG E1;2; YAN Yonggui2; LI Qingfen3; MA Li2
1. School of Materials Science and Chemical Engineering; Harbin Engineering University; Harerbin 150001
2. Luoyang Ship Material Research Institute; State Key Laboratory for Marine Corrosion and Protection; Qingdao 266071
3. School of Mechanical and Electrical Engineering; Harbin Engineering University; Harerbin 150001
全文: PDF(1223 KB)  
摘要: 

利用慢应变速率实验和电化学方法研究了921A钢在海水中不同阴极极化电位下氢脆敏感性的变化趋势,并结合三维视频和扫描电镜观察断口形貌。结果表明,随阴极极化电位的负移,921A钢的韧性降低且氢脆系数增加。在极化电位负于 -0.960 V(相对于饱和甘汞电极电位),921A钢的氢脆系数显著增加至约20%,并出现准解理断裂特征形貌。

关键词 慢应变速率试验921A钢氢脆阴极极化    
Abstract

The susceptibility of  921A steel to hydrogen embrittlement was investigated by slow strain rate test and electrochemical study at different cathodic polarization potentials. Fracture surfaces observation were made by three-dimension microscope and scanning electron microscope (SEM). The results showed that the elongation, time-to-fracture, and fracture energy ratio decreased and hydrogen embrittlement coefficient increased with shifting potential in the negative direction. The elongation, time-to-fracture, and fracture energy ratio displayed uniform variance trend and exhibited the highest values when polarization potential was -0.710 VSCE. when the polarization potentials were negative to -0.960 V SCE, the hydrogen embrittlement coefficient suddenly increased  and the fracture surfaces exhibited quasi-cleavage fracture. The brittle fracture was observed by three-dimension microscope when the polarization potential was -1.110 VSCE. The resistance of hydrogen embrittlement decreased when the polarization potential reached -0.960 VSCE.

 

Key wordsslow strain rate test    921A steel    hydrogen embrittlemen    cathodic polarization
收稿日期: 2008-07-14     
ZTFLH: 

TG172.5

 
基金资助:

海洋腐蚀与防护国防科技重点实验室基金项目(9140C2502010701)资助

通讯作者: 常娥     E-mail: change@sunrui.net
Corresponding author: CHANG E     E-mail: change@sunrui.net
作者简介: 常娥,女,1983年生,硕士生,研究方向为金属材料的腐蚀与防护

引用本文:

常娥;闫永贵;李庆芬;马力. 阴极极化对921A钢海水中氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 83-88.
CHANG E. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF 921A STEEL IN SEA WATER. J Chin Soc Corr Pro, 2010, 30(1): 83-88.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/83

[1] Cao C N. Principle of Corrosion Electrochemistry(second edition) [M]. Beijing: Chemical Industry Press, 2004
    (曹楚南. 腐蚀电化学原理(第二版) [M]. 北京:化学工业出版社, 2004)
[2] Billingham J, Sharp J V, Spurrier J. Review of the Performance of High Strength Steels Used Offshore [M]. UK: Health & Safety Executive, 2003: 111-117
[3] Chu W Y, Qiao L J, Chen Q Z, et al. Fracture and Environment Fracture [M]. Beijing: Science Press, 2001
    (褚武扬, 乔利杰, 陈奇志. 断裂与环境断裂 [M]. 北京:科学出版社, 2001)
[4] Du Y X, Zhang G Z. Numerical modeling of cathodic protection potential [J]. J. Chin. Soc. Corros. Prot, 2006, 26(6): 346-350
    (杜艳霞, 张国忠. 储罐底板外侧阴极保护电位分布的数值模拟 [J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350)
[5] Cao S S, Sun J X. Optimization model of the cathodic protection system [J]. J. Chin. Soc.Corros. Prot, 2007, 27(2): 114-118
    (曹圣山, 孙吉星. 阴极保护设计问题的优化模型 [J]. 中国腐蚀与防护学报, 2007, 27(2): 114-118)
[6] Yan M C, Wang J Q, Ke W, et al. Effectiveness of cathodic protection under simulated disbonded coating on pipelines [J]. J. Chin. Soc.Corros. Prot, 2007, 27(5): 257-262
    (闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性 [J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262)
[7] Zhao J, Zhang L H, Zhao Q. A new method for calculating the downhole cathodic protection potentials of well casings [J]. J. Chin. Soc. Corros. Prot, 2001, 21(6): 363-367
    (赵健, 张莉华, 赵泉. 油井套管井下阴极保护电位计算方法研究 [J]. 2001, 21(6): 363-367)
[8] Tan W Z, Du Y L, Fu C, et al. Environment embrittlemet caused bycathodic protection of ZC-120 steel in sea water [J]. Mater.Prot., 1988, 21(3): 10-13
    (谭文志,杜元龙,傅超等. 阴极保护导致ZC-120钢在海水中环境氢脆 [J]. 材料保护,1988,21(3): 10-13)
[9] Qiu K Y, Wei B M, Fang Y H. The cathodic protection and susceptibility of hydrogen embrittlement of 16 Mn steel\linebreak in3% NaCl solution [J]. J. Nanjing Inst. Chem. Technol, 1992, 14(2): 8-14
    (邱开元,魏宝明,方耀华. 16Mn钢在3%氯化钠水溶液中的阴极保护及其氢脆敏感性 [J].南京化工学院学报, 1992, 14(2): 8-14)
[10] Wang H R, Zeng Q F. Effects of cathodic protection on stress corrosion property of 921 steel in sea water [A]. Academic Exchanging Meeting of Electrochemistry and test method [C]. Wuhan, 2004: 164-169
     (王洪仁, 曾庆福. 阴极保护电位对921钢海水中应力腐蚀性能影响研究 [A]. 2004年腐蚀电化学及测试方法学术交流会 [C]. 武汉, 2004: 164-169)
[11] Weng Y J, Zhao H Y. Evaluation of pitting sensitivity of stainless steel in NaCl solutions by means of wire beam electrodes(WBE) [J]. J. Chin. Soc.Corros. Prot, 2003, 23(6): 326-329
     (翁永基, 赵海燕. 用丝束电极(WBE)评价不锈钢在NaCl溶液中点蚀敏感性 [J]. 中国腐蚀与防护学报, 2003, 23(6): 326-329)
[12] Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522-530
[13] Shin-ichi Komazaki,Rie Maruyama, Toshihei Misawa. Effect of applied cathodic potential on susceptibility to hydrogen embrittlement in high strength low alloy steel [J]. ISIJ Int., 2003, 43: 475-481
[14] Oni A. Effects of cathodic overprotection on some mechanical properties of a dual-phase low-alloy steel in sea water [J]. Constr. Build.Mater., 1996, 10: 481-484
[15] Kim S J, Jang S K, Kim J I. Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel [J]. Met. Mater. Int., 2005, 11: 63-69
[16] Kim S J, Jang S K, kim J I. Effects of post-weld heat treatment on optium cathodic protection potential of high-strength steel in marine environment conditions [J]. Mater.Sci. Forum, 2005, 486-487: 133-136
[17] Batt C, Dodson J, Robinson M J. Hydrogen embrittlement of cathodically protected high strength steel in sea water and seabed sediment [J]. Bri. Corros. J., 2002, 37: 194-198
[18] Mike B, Gareth J. Determining the compatibility of high strength steels to cathodic protection [A]. NACE International Corrosion 2008 Conference & Expo [C]. 08066: 1-14
[19] GB/T 15970-2000, The Corrosion of Metal and Alloy Stress-Corrosion Test [S]. (GB/T 15970-2000, 金属和合金的腐蚀应力腐蚀实验 [S])
[20] Shu D L. The Mechanical Properties of Metals [M].Beijing: China Machine Press, 1999(束德林. 金属力学性能 [M]. 北京:机械工业出版社, 1999)
[21] Wei X J, Li J, Ke W. Crack growth retardation of single overload for A537 steel in a 3.5% NaCl solution under cathodic potential and free corrosion condition [J]. Int. J. Fatigue, 1998, 20: 225-231
[22] Cao C N, Zhang J Q. Introduction of Electrochemical Impendance Spectroscope [M]. Beijing: Science Press, 2002
     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[23] Zhang J X, Xu N, Ge H H. Determining optimum cathodicprotection potential for brass [J]. Mater.Perform., 2006, 3: 20-24
[24] Wu J X, Fu Z G, Zhang P Q, et al. AC impendance characterisitics of low alloy steels under cathodic protection and determination of the optimum protection potential [J].J. Chin. Soc. Corros. Prot, 1989, 9(6): 160-164
     (吴继勋, 傅争光, 张普强等. 用交流阻抗技术确定船用钢的最佳阴极保护电位 [J]. 中国腐蚀与防护学报, 1989, 9(6): 160-164)
[25] Fournier L, Delafosse D, Magnin T. Cathodic hydrogen embrittlement in alloy 718 [J]. Mater.Sci. Eng., 1999, 269: 111-119

[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[8] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[9] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[10] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[11] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[12] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[13] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[14] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[15] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.