Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 89-92    
  研究报告 本期目录 | 过刊浏览 |
5Cr油管电化学充氢后的力学行为
薛艳1;赵国仙1;董会2;赵大伟1
1. 西安石油大学材料科学与工程学院 西安 710065
2. 西安摩尔石油工程实验室 西安 710065
MECHANICAL BEHAVIORS OF 5Cr TUBING AFTER ELECTROCHEMICAL HYDROGEN CHARGING
XUE Yan1; ZHAO Guoxian1; DONG Hui2; ZHAO Dawei1
1. School of Materials Science and Engineering; Xi'an Shiyou University; Xi'an 710065
2. Xi'an Maurer Petroleum Engineering Laboratory; Xi'an 710065
全文: PDF(1698 KB)  
摘要: 

通过拉伸实验研究电化学充氢对5Cr油管钢拉伸性能的影响表明:随充氢时间和充氢电流密度的增加,5Cr油管的强度和塑性有所减小。用扫描电镜(SEM)观察断口发现其形貌以韧窝为主要特征,与未充氢试件相比,充氢试样拉伸断裂后韧窝尺寸变小、变浅,数量增多,这说明材料的塑性损失增大。充氢到一定值后材料由韧性断裂转变为脆性断裂。

关键词 5Cr油管电化学充氢力学性能断口形貌    
Abstract

Tensile tests were used to investigate the mechanical behaviors of 5Cr tubing after electrochemical hydrogen charging. The experiment results show that the tensile strength and the plasticity decreased with the increase of pre-charging time and pre-charging density. Analysis on the fracture morphology by scanning electron microscope(SEM) indicated that the fracture surfaces of 5Cr tubing were characteristic of ductile dimple fracture pattern after electrochemical hydrogen charging. The diameter and depth of ductile dimple were smaller than the specimen without charging, but the number of ductile dimple was increased, which means that the loss of plastic properties was increased. When the hydrogen concentration reached a certain value, the fracture mode was changed from ductile fracture to brittle fracture.

Key words5Cr tubing    electrochemical hydrogen charging    mechanical properties    fracture morphology
收稿日期: 2009-04-20     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金项目(50535050,50405042)资助

通讯作者: 赵国仙     E-mail: zhaoguoxianxian@sina.com
Corresponding author: ZHAO Guoxian     E-mail: zhaoguoxianxian@sina.com
作者简介: 薛艳,女,1982年生,硕士,研究方向为油气田腐蚀与防护技术

引用本文:

薛艳;赵国仙;董会;赵大伟. 5Cr油管电化学充氢后的力学行为[J]. 中国腐蚀与防护学报, 2010, 30(1): 89-92.
XUE Yan, DIAO Guo-Xian, DONG Hui, DIAO Tai-Wei. MECHANICAL BEHAVIORS OF 5Cr TUBING AFTER ELECTROCHEMICAL HYDROGEN CHARGING. J Chin Soc Corr Pro, 2010, 30(1): 89-92.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/89

[1] Delafosse D, Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems [J]. Eng. Fract. Mech., 2001, 68(6): 693-729
[2] Zhao Y, Wang R. An investigation on mechanical behaviors of pipeline steel X70 after electrochemical hydrogen charging [J]. J. Chin. Soc. Corros. Prot.,2004, 24(5): 293-296
    (赵颖,王荣.X70管线钢电化学充氢后的力学行为研究 [J].中国腐蚀与防护学报,2004,24(5):293-296)
[3] Zhang S H, Wang R. Study of fracture toughness of X80 pipeline steel after electrochemical hydrogen charging [J]. China Pet. Mach.,2008, 36(1): 16-18
    (张士欢,王荣.X80管线钢电化学充氢后的断裂特性研究 [J].石油机械,2008,36(1):16-18)
[4] Zhang Y R, Dong C F, Li X G, et al. Hydrogen induced cracking behaviors of X70 pipeline steel and its welds under electrochemical charging [J]. Acta Mech. Sin., 2006, 42(5): 521-527
    (张颖瑞,董超芳,李晓刚等.电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为 [J]. 金属学报.2006,42(5):521-527)
[5] Zhang T, Long J, Sun X L, et al. An experimental investigation on hydrogen permeation in pipeline steel X80 [J]. J. Logist. Eng. Univ., 2003, 1: 16-18
    (张涛,龙军,孙新岭等.管道钢X80氢渗透试验研究 [J].后勤工程学院学报,2003,1:16-18)
[6] Zhang T, Li Z X, Su Y, et al. Analysis on fracture surface of hydrogen induced cracking (HIC) for X80 pipeline steel [J]. Mater.Mech. Eng., 2004, 28(3): 13-15
    (张涛,李著信,苏毅等.X80管线钢氢致断裂断口分析 [J].机械工程材料,2004,28(3):13-15)
[7] Chu W Y, Qiao L J, Chen Q Z, et al. Fracture and Environmental Fracture [M]. Beijing: Science Press, 2000.
    (褚武扬,乔利杰,陈奇志等.断裂与环境断裂 [M].北京:科学出版社,2000)
[8] Yu G H, Cheng Y H, Chen H X, et al. Hydrogen-induced failure oil-well tubular steel C90 [J]. Acta Metall. Sin., 1996,32(6): 617-623
    (于广华,程以环,陈红星等.C90油管钢的氢损伤 [J].金属学报,1996,32(6):617-623)
[9] Sun Y, Hu J. Metal Corrosion and Control [M]. Harbin: Harbin Institute of Technology Press, 2006.
    (孙跃,胡津.金属腐蚀与控制 [M].哈尔滨:哈尔滨工业大学出版社,2006)
[10] Wang R. Effects of hydrogen on fracture of pre-cracking specimens of X70 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2008,28(2): 81-85
     (王荣.氢对X70管线钢预裂纹试样断裂性能的影响 [J].中国腐蚀与防护学报,2008,28(2):81-85)
[11] Li M, Lu M J, Zhang J L et al. Second propagation mechanism in dynamic fracture for die steel 10Ni3MnCuAl [J]. Mater.Mech. Eng., 1997, 21(2): 10-12
     (李明,陆明炯,张嘉立等.10Ni3MnCuAl钢动态断裂过程中二次裂纹扩展机制 [J].机械工程材料,1997,21(2):10-12)

[1] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[2] 梅华生, 王长朋, 张帷, 周漪, 杨王玲. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 388-394.
[3] 吴进怡,罗琦,肖伟龙,柴柯,曹阳. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 343-348.
[4] 钟曼英. 氢对2(1/4)Cr-1Mo钢力学性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 236-239.
[5] 赵羽习,任海洋. 基于固结试验和接触理论分析的铁锈力学性能[J]. 中国腐蚀与防护学报, 2010, 30(5): 383-390.
[6] 肖伟龙,柴柯,杨雨辉,吴进怡. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363.
[7] 俞芳 高克玮 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
[8] 孙霜青 郑弃非 李德富 陈杰 温军国. LY12铝合金的长期大气腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(6): 442-446.
[9] 李美姮; 管恒荣 . 热障涂层的性能评价[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[10] 汪淑英; 李具仓; 赵爱民 . 含铬高硅铁基合金组织和性能的研究[J]. 中国腐蚀与防护学报, 2007, 27(5): 292-295 .
[11] 罗天元 . 高比重钨合金材料的腐蚀特性[J]. 中国腐蚀与防护学报, 2004, 24(6): 356-359 .
[12] 赵颖 . X70管线钢电化学充氢后的力学行为研究[J]. 中国腐蚀与防护学报, 2004, 24(5): 293-296 .
[13] 孙广平; 贾树盛; 朱先勇; 郝博; 于妍 . 热固性丙稀酸酯类-壳结构互穿网络水性阻尼涂料的动态力学性能[J]. 中国腐蚀与防护学报, 2004, 24(1): 41-44 .
[14] 李红梅; 杨武; 蔡旬; 吕战鹏 . 304不锈钢在含硼和锂的高温水中的应力腐蚀破裂和断口分析[J]. 中国腐蚀与防护学报, 2004, 24(1): 16-19 .