Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 21-24    
  研究报告 本期目录 | 过刊浏览 |
3-氨基-5-巯基-1,2,4-三唑在除盐水中对Cu的缓蚀作用
余建飞1;2;江莉2;甘复兴2;3
1. 湖北省电力试验研究院 武汉 430077
2. 武汉大学资源与环境科学学院 武汉 430079
3. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
INHIBITION OF COPPER CORROSION IN DEIONIZED WATER BY 3-AMINO-5-MERCAPTO-1,2,4-TRIAZOLE
YU Jianfei1;2; JIANG Li2; GAN Fuxing2;3
1. Hubei Electric Power Testing & Research Institute; Wuhan 430077
2. School of Resource and Environmental Science; Wuhan University; Wuhan 430079
3. State Key Laboratory for Corrosion and Protection; Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110016
全文: PDF(442 KB)  
摘要: 

用动电位极化法、电化学阻抗谱(EIS)和失重法研究了3-氨基-5-巯基-1,2,4-三唑(3-AMT)在除盐水中对Cu腐蚀行为的影响和吸附规律。研究表明,缓蚀效率随着缓蚀剂3-AMT浓度的上升而增大,当其浓度大于4× 10-5 mol/L时,对Cu具有较好的缓蚀性能,3-AMT是一种混合型缓蚀剂。吸附过程为放热过程,属化学吸附,服从Langmuir吸附等温式。

关键词 铜腐蚀3-AMT除盐水电化学阻抗谱    
Abstract

The corrosion behavior of copper in the presence of 3-amino-5-mer capto-1,2,4-triazole (3-AMT) has been investigated in deionized water. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight-loss measurement were applied to analyze the effect of the organic compounds on the corrosion inhibition of copper. Results showed that the inhibition efficiency increased with increasing the inhibitor concentration and the compound acted at anodic-type inhibitor. The adsorption of 3-AMT has been found to occur on the surface of copper according to the Langmuir isotherm. 3-AMT is chemically adsorbed on the copper surface.

Key wordscopper    3-amino-5-mercapto-1,2,4-triazole    deionized water    EIS
收稿日期: 2008-06-19     
ZTFLH: 

TG174

 
通讯作者: 甘复兴     E-mail: fxgan88@163.com
Corresponding author: GAN Fuxing     E-mail: fxgan88@163.com
作者简介: 余建飞,女,1974年生,博士,研究方向为材料腐蚀与防护

引用本文:

余建飞;江莉;甘复兴. 3-氨基-5-巯基-1,2,4-三唑在除盐水中对Cu的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(1): 21-24.
YU Jian-Fei, JIANG Li. INHIBITION OF COPPER CORROSION IN DEIONIZED WATER BY 3-AMINO-5-MERCAPTO-1,2,4-TRIAZOLE. J Chin Soc Corr Pro, 2010, 30(1): 21-24.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/21

[1] Park B G, Hwang I H, Rhee I S. Effect of the electrochemical corrosion potential of copper on plugging of generator water-cooling circuits [J]. Corrosion.2005, 61(6): 559-570
[2] Larabi L, Benali O, Mekelleche S M.2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid [J]. Appl. Surf. Sci., 2006, 253(3): 1371-1378
[3] Sherif E M, Su-Moon Park. 2-Amino-5-ethyl-1,3,4-thiadiazole as a corrosion inhibitor for copper in 3.0% NaCl solutions [J]. Corros. Sci., 2006, 48(12): 4065-4079
[4] Szocs E, Vastag Gy, Shaban A. Electrochemical behaviour of an inhibition film formed on copper surface [J]. Corros.Sci., 2005, 47(4 ): 893-908
[5] Huynh N, Bottle S E, Notoya, et al. Effect of adsorption of some azoles on copper passivation in alkaline medium [J]. Corros. Sci., 2002, 44(3):535-554
[6] El-Sayed, Sherif M. Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole on copper corrosion as a corrosion as a corrosion inhibitor in 3% NaCl solutions [J]. Appl.Surf. Sci., 2006, 252(8): 8615-8623
[7] Shahrabi T, Hossein Tavakholi. Corrosion inhibition of copper in sulphuric acid by some nitrogen heterocyclic compounds [J].Anti-Corros. Methods Mater., 2007, 54(5): 308-313
[8] Yu P, Liao D M, Luo Y B. Studies of benzotriazole and tolytriazole as inhibitors for copper corrosion in deionized water [J]. Corrosion,2003, 59(4): 314-318
[9] Zucchi F, Trabanelli G, Fonsati M. Tetrazole derivatives as corrosion inhibitor for copper in chloride solutions [J]. Corros. Sci., 1996, 38(11): 2019-2029
[10] Lalitha A, Ramesh S,Rajesware S. Surface protection of copper in acid medium by azoles and surfactants [J]. Electrochim. Acta, 2005, 51(1): 47-55
[11] Aramaki K, Kiuchi T, Sumiyoshi T. Surface enhanced Raman scattering and impedance studies on the inhibition of copper corrosion in sulphate solutions by 5-substituted benzotriazoles [J]. Corros. Sci.,1991, 32(5-6): 593-607
[12] Hamdy, Hassan H. Participation of the dissolved O2 in the passive layer formation on Zn surface in neutral media [J]. Electrochim. Acta, 2007, 53(4): 1722-1730
[13] Shams A M, Mohammed R A, Haggag H H. Corrosion inhibition by molybdate/polymaliate mixtures [J]. Desalination, 1997, 114(1): 85-95
[14] Abd Ei-Maksoud S A, Hassan H H. Electrochemical studies on the effect of (2E)-3-amino-2-phenylazo-but-2-enenitrile and its derivative on the behavior of copper in nitric acid [J]. Mater. Corros.,2007, 58(5): 369-375
[15] Wang H L, Liu R B, Xin J.Inhibition effects of some mercapto-triazole derivatives on the corrosion of mild steel in 1.0 M HCl medium [J]. Corros. Sci.,2004, 46(10): 2455-2466
[16] Khaled M, Ismail. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions [J]. Electrochim. Acta,2007, 52(28): 7811-7819
[17] Ramesh S, Rajeswari S, Maruthamuthu S.Corrosion inhibition of copper by new trizaole phosphonate derivatives [J]. Appl. Surf. Sci., 2004, 229(2): 214-225
[18] Telegdi J, Rigo T, Kalman E. Nanolayer barriers for inhibition of copper corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39(1): 65-74
[19] Solmaz R, Karda G. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media [J]. Colloids Surf., 2008, 312 (1): 7-17
[20] Chen Y, Hong T, Gopal M, et al. EIS studies of a corrosion inhibitor behavior under multiphase flow conditions [J]. Corros. Sci., 2000, 42(7): 979-990
[21] Ramesh S, Rajeswari S. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatves[J]. Electrochim. Acta, 2004, 49(5): 811-820
[22] Achouri M El,Kertit S, Gouttaya H M, et al. Corrosion inhibition of iron in 1M HCl by some Gemini surfactants in the series of alkanedily-α, ω-bis-(dimethyl tetradecyl ammonium bromide) [J]. Prog. Org. Coat.,2001, 43(4): 267-273
[23] Ashassi-Sorkhabi H, Shaabani B, Seizadeh D. Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid [J].Appl. Surf. Sci., 2005, 239(2): 154-164
[24] Moretti G, Guidi F, Grion G. Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulfuric acid [J]. Corros. Sci., 2004, 46(2): 387-403

[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[8] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[9] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[11] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[15] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.