|
|
涂层自修复技术研究进展 |
张勇( ),樊伟杰,张泰峰,王安东,陈跃良 |
海军航空大学青岛校区 航空机械工程与指挥系 青岛 266041 |
|
Review of Intelligent Self-healing Coatings |
ZHANG Yong( ),FAN Weijie,ZHANG Taifeng,WANG Andong,CHEN Yueliang |
Aeronautical Machinery Engineering and Command Department, Qingdao Branch of Naval Aeronautical University, Qingdao 266041, China |
引用本文:
张勇,樊伟杰,张泰峰,王安东,陈跃良. 涂层自修复技术研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 299-305.
Yong ZHANG,
Weijie FAN,
Taifeng ZHANG,
Andong WANG,
Yueliang CHEN.
Review of Intelligent Self-healing Coatings. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 299-305.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2018.137
或
https://www.jcscp.org/CN/Y2019/V39/I4/299
|
[1] | GuiT J, LiuX Y. Self- healing materials and their aplication in coatings [J]. Modern Paint Fish., 2007, 10(12): 29 | [1] | (桂泰江, 刘希燕. 自修复材料及在涂料中的应用 [J]. 现代涂料与涂装, 2007, 10(12): 29) | [2] | BleayS M, LoaderC B, HawyesV J, et al. A smart repair system for polymer matrix composites [J]. Composites, 2001, 32A: 1767 | [3] | KousourakisA, MouritzA P. The effect of self-healing hollow fibres on the mechanical properties of polymer composites [J]. Smart Mater. Struct., 2010, 19: 085021 | [4] | ZhangF. Research on the repairing technology and materials for concrete cracks [D]. Daqing: Daqing Petroleum Institute, 2009 | [4] | (张芳. 混凝土裂缝修复技术及材料的研究 [D]. 大庆: 大庆石油学院, 2009) | [5] | XuJ W. Preparation and performance of hollow fiber implanted self-healing epoxy matrix composite [D]. Zhenjiang: Jiangsu University, 2012 | [5] | (许君尉. 中空纤维埋植型自修复环氧复合材料的制备及性能研究 [D]. 镇江: 江苏大学, 2012) | [6] | GhoshS K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications [M]. Weinheim: Wiley-VCH, 2008: 1 | [7] | YangY J, ZhangH, ZhangJ, et al. The experiment study of fracture mechanics on self-healing composite material containing microcapsules [J]. Mater. Rev., 2007, 21(1): 143 | [7] | (杨艳娟, 张恒, 张军等. 微胶囊自修复复合材料断裂力学实验研究 [J]. 材料导报, 2007, 21(1): 143) | [8] | WhiteS R, SottosN R, GeubelleP H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409: 794 | [9] | KumarA, StephensonL D, MurrayJ N. Self-healing coatings for steel [J]. Prog. Org. Coat., 2006, 55: 244 | [10] | ChoiH, KimK Y, ParkJ M. Encapsulation of aliphatic amines into nanoparticles for self-healing corrosion protection of steel sheets [J]. Prog. Org. Coat., 2013, 76: 1316 | [11] | FereidoonA, AhangariM G, JahanshahiM. Effect of nanoparticles on the morphology and thermal properties of self-healing poly (urea-formaldehyde) microcapsules [J]. J. Polym. Res., 2013, 20: 151 | [12] | TripathiM, Rahamtullah, KumarD, et al. Influence of microcapsule shell material on the mechanical behavior of epoxy composites for self-healing applications [J]. J. Appl. Polym. Sci., 2014, 131: 40572 | [13] | YabukiA, KawashimaA, FathonaI W. Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor [J]. Corros. Sci., 2014, 85: 141 | [14] | ChowdhuryR A, HosurM V, NuruddinM, et al. Self-healing epoxy composites: Preparation, characterization and healing performance [J]. J. Mater. Res. Technol., 2015, 4: 33 | [15] | ThakurV K, KesslerM R. Self-healing polymer nanocomposite materials: A review [J]. Polymer, 2015, 69: 369 | [16] | TianW. Study on the self-healing polymer material with microcapsulated healing agent [D]. Shanghai: Donghua University, 2005 | [16] | (田薇. 基于微胶囊技术的自修复材料的研究 [D]. 上海: 东华大学, 2005) | [17] | DangX D, ZhangH, HeY J. Study of capsuling self-repairing smart composites [J]. Mater. Rev., 2005, 19(1): 30 | [17] | (党旭丹, 张恒, 贺跃进. 胶囊型自修复智能复合材料研究 [J]. 材料导报, 2005, 19(1): 30) | [18] | HaoH Y. Synthetic and characterization of microcapsules for self-healing polymer composite [D]. Harbin: Harbin Institute of Technology, 2007 | [18] | (郝焕英. 复合材料自修复用微胶囊的制备及性能表征 [D]. 哈尔滨: 哈尔滨工业大学, 2007) | [19] | HuH L. Study on surface modification of microcapsules in self-healing polymer-based composites [D]. Harbin: Harbin Institute of Technology, 2008 | [19] | (胡宏林. 聚合物基复合材料自修复用微胶囊表面改性的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008) | [20] | XingR Y, ZhangQ Y, AiQ S, et al. Preparation and properties research of self-healing microcapsules of reactive ethylene silicone oil/poly (urea-formaldehyde) [J]. Mater. Rev., 2009, 23(10): 87 | [20] | (邢瑞英, 张秋禹, 艾秋实等. 反应性乙烯基硅油/聚脲甲醛自修复微胶囊的制备 [J]. 材料导报, 2009, 23(10): 87) | [21] | WangL T, DengL P, ZhangD W, et al. Shape memory composite (SMC) self-healing coatings for corrosion protection [J]. Prog. Org. Coat., 2016, 97: 261 | [22] | LuoY P. Synthesis and application of self-repairing microcapsules [D]. Guangzhou: South China University of Technology, 2011 | [22] | (罗永平. 自修复微胶囊的合成与应用研究 [D]. 广州: 华南理工大学, 2011) | [23] | YanY, LuoY P, ZhangH P. Preparation and characterization of microcapsules for self-healing material [J]. Mater. Rev., 2011, 25(2): 30 | [23] | (鄢瑛, 罗永平, 张会平. 自修复微胶囊的制备与表征 [J]. 材料导报, 2011, 25(2): 30) | [24] | ZhaoP. Synthesis and properties of self-healing microcapsules for metallic anticorrosive coating [D]. Guangzhou: South China University of Technology, 2012 | [24] | (赵鹏. 金属防腐涂料自修复微胶囊的合成与性能研究 [D]. 广州: 华南理工大学, 2012) | [25] | YuanY C, RongM Z, ZhangM Q. Preparation and characterization of poly (melamine-formaldehyde) walled microcapsules containing epoxy [J]. Acta Polym. Sin., 2008, (5): 472 | [25] | (袁彦超, 容敏智, 章明秋. 三聚氰胺-甲醛树脂包裹环氧树脂微胶囊的制备及表征 [J]. 高分子学报, 2008, (5): 472) | [26] | WangH P, RongM Z, ZhangM Q. Self-healing polymers and polymer-based composites containing microcapsules [J]. Prog. Chem., 2010, 22: 2397 | [26] | (汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料 [J]. 化学进展, 2010, 22: 2397) | [27] | ZhangH R, WangJ X, LiuX X, et al. High performance self-healing epoxy/polyamide protective coating containing epoxy microcapsules and polyaniline nanofibers for mild carbon steel [J]. Ind. Eng. Chem. Res., 2013, 52: 10172 | [28] | WangW, XuL K, LiX B, et al. Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces [J]. Corros. Sci., 2014, 80: 528 | [29] | WangW, XuL K, SunH Y, et al. Spatial resolution comparison of AC-SECM with SECM and their characterization of self-healing performance of hexamethylene diisocyanate trimer microcapsule coatings [J]. J. Mater. Chem., 2015, 3A: 5599 | [30] | FanW, ZhangY, LiW, et al. Multi-level self-healing ability of shape memory polyurethane coating with Microcapsules by induction heating [J]. Chem. Eng. J., 2019, 368: 1033 | [31] | WangX, WangW, LiuA, et al. Self-healing and anti-corrosion performances of 1, 2, 4-Triazole modified nano-silica hydrogels [J]. Colloid Interface Sci. Commun., 2018, 27: 11 | [32] | LiuX, LiW, WangW, et al. Synthesis and characterization of pH-responsive mesoporous chitosan microspheres loaded with sodium phytate for smart water-based coatings [J]. Mater. Corros., 2018, 3: 1 | [33] | LiT T, WangR, LiuX. Current research on composites self-healed by microcapsules [J]. Mater. Rev., 2010, 24(17): 57 | [33] | (李婷婷, 王瑞, 刘星. 微胶囊自修复复合材料的研究进展 [J]. 材料导报, 2010, 24(17): 57) | [34] | FengJ Z, MingY Q, ZhangY F, et al. Progress of research on encapsuled isocyanate self-healing polymeric materials [J]. Chem. Ind. Eng. Prog., 2016, 35: 175 | [34] | (冯建中, 明耀强, 张宇帆等. 异氰酸酯胶囊型自修复高分子材料研究进展 [J]. 化工进展, 2016, 35: 175) | [35] | YeS N, WangP, SunY C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91 | [35] | (叶三男, 王培, 孙阳超等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91) | [36] | ChenY L, WangC G, ZhangY, et al. Coating corrosion failure analysis and influence of titanium-steel bolted lap joints [J]. Acta Aeronaut. Astronaut. Sin., 2016, 37: 3528 | [36] | (陈跃良, 王晨光, 张勇等. 钛-钢螺栓搭接件涂层腐蚀失效分析及影响 [J]. 航空学报, 2016, 37: 3528) | [37] | ZhangY, ChenY L, WangC G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere [J]. Mater. Rev., 2016, 30(10): 152 | [37] | (张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究 [J]. 材料导报, 2016, 30(10): 152) | [38] | DryC M. Smart-fiber-reinforced matrix composites [P]. United States Patent, 5803963, 1998) | [39] | ChenX X, DamM A, OnoK, et al. A thermally re-mendable cross-linked polymeric material [J]. Science, 2002, 295: 1698 | [40] | ChenX X, WudlF, MalA K, et al. New thermally remendable highly cross-linked polymeric materials [J]. Macromolecules, 2003, 36: 1802 | [41] | AdzimaB J, KloxinC J, BowmanC N. Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating [J]. Adv. Mater., 2010, 22: 2784 | [42] | AdzimaB J, AguirreH A, KloxinC J, et al. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network [J]. Macromolecules, 2008, 41: 9112 | [43] | DuX C. Study on the preparation and the self-healing properties of the cross-linked polyurethane based on Diels-Alder reaction [D]. Qingdao: Qingdao University of Science and Technology, 2016 | [43] | (杜秀才. 基于Diels-Alder反应的交联聚氨酯的制备与自修复性能的研究 [D]. 青岛: 青岛科技大学, 2016) | [44] | LiuY L, HsiehC Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds [J]. J. Polym. Sci., 2006, 44A: 905 | [45] | WatanabeM, YoshieN. Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly (ethylene adipate) and multi-maleimide linkers [J]. Polymer, 2006, 47: 4946 | [46] | YoshieN, WatanabeM, ArakiH, et al. Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: Polymers from bisfuranic terminated poly (ethylene adipate) and tris-maleimide [J]. Polym. Degrad. Stabil., 2010, 95: 826 | [47] | KavithaA A, SinghaN K. A tailor-made polymethacrylate bearing a reactive diene in reversible Diels-Alder reaction [J]. J. Polym. Sci., 2007, 45A: 4441 | [48] | KavithaA A, SinghaN K. "Click chemistry" in tailor-made polymethacrylates bearing reactive furfuryl functionality: A new class of self-healing polymeric material [J]. ACS Appl. Mater. Interfaces, 2009, 1: 1427 | [49] | LiuY L, HsiehC Y, ChenY W. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction [J]. Polymer, 2006, 47: 2581 | [50] | ZhangY C, BroekhuisA A, PicchioniF. Thermally self-healing polymeric materials: The next step to recycling thermoset polymers? [J]. Macromolecules, 2009, 42: 1906 | [51] | ToncelliC, De ReusD C, PicchioniF, et al. Properties of reversible Diels-Alder furan/maleimide polymer networks as function of crosslink density [J]. Macromol. Chem. Phys., 2012, 213: 157 | [52] | OkhayN, MignardN, JegatC, et al. Diels-Alder thermoresponsive networks based on high maleimide-functionalized urethane prepolymers [J]. Des. Monom. Polym., 2013, 16: 475 | [53] | VarganiciC D, UrsacheO, GainaC, et al. Synthesis and characterization of a new thermoreversible polyurethane network [J]. Ind. Eng. Chem. Res., 2013, 52: 5287 | [54] | VarganiciC D, UrsacheO, GainaC, et al. Studies on new hybrid materials prepared by both Diels-Alder and Michael addition reactions [J]. J. Therm. Anal. Calorim., 2013, 111: 1561 | [55] | DemetgülC, Delikanl?A, Sar?b?y?kO Y, et al. Schiff base polymers obtained by oxidative polycondensation and their Co(II), Mn(II) and Ru(III) complexes: Synthesis, characterization and catalytic activity in epoxidation of styrene [J]. Des. Monom. Polym., 2012, 15: 75 | [56] | PlaistedT A, Nemat-NasserS. Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer [J]. Acta Mater., 2007, 55: 5684 | [57] | VernonL B, VernonH M. Process of manufacturing articles of thermoplastic synthetic resins [P]. United States Patent, 2234993, 1941) | [58] | QiC, LiuP. Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters [J]. Polym. Bull., 2006, 57(6): 889 | [59] | HuJ L, FanH J. Thermal-sensitive intelligent polymers and their application [J]. J. Text. Res., 2005, 26(6): 122 | [59] | (胡金莲, 范浩军. 智能热敏形状记忆聚合物及其应用 [J]. 纺织学报, 2005, 26(6): 122) | [60] | HuJ L, YangZ H. Research and application of shape memory polymer [J]. Dye. Finish., 2004, 30(3): 44 | [60] | (胡金莲, 杨卓鸿. 形状记忆高分子材料的研究及应用 [J]. 印染, 2004, 30(3): 44) | [61] | SongB, ZhuG M, DengD. Applications of shape memory polyurethane [J]. Chem. Ind. Eng., 2007, 24: 453 | [61] | (宋斐, 朱光明, 邓登. 形状记忆聚氨酯及其应用 [J]. 化学工业与工程, 2007, 24: 453) | [62] | HuJ L, FanH J. Water-based block polyurethane, method of preparation and waterproof, warm and moisture permeable materials prepared therefrom [P]. Chin Pat, 200410002551.8, 2005 | [62] | (胡金莲, 范浩军. 水基嵌段聚氨酯、其制法及由其制备的防水、保暖、透湿性材料 [P]. 中国专利, 200410002551.8, 2005) | [63] | JorcinJ B, ScheltjensG, van IngelgemY, et al. Investigation of the self-healing properties of shape memory polyurethane coatings with the ‘odd random phase multisine’ electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2010, 55: 6195 | [64] | González-GarcíaY, MolJ M C, MuselleT, et al. A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings [J]. Electrochim. Acta, 2011, 56: 9619 | [65] | NjiJ, LiG Q. Damage healing ability of a shape-memory-polymer-based particulate composite with small thermoplastic contents [J]. Smart Mater. Struct., 2012, 21: 025011 | [66] | LiG Q, UppuN. Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization [J]. Compos. Sci. Technol., 2010, 70: 1419 | [67] | LuoX F, MatherP T. Shape memory assisted self-healing coating [J]. ACS Macro Lett., 2013, 2: 152 | [68] | LutzA, van den BergO, Van DammeJ, et al. A shape-recovery polymer coating for the corrosion protection of metallic surfaces [J]. ACS Appl. Mater. Interfaces, 2014, 7: 175 | [69] | MoadG, RizzardoE, ThangS H. ChemInform abstract: Living radical polymerization by the RAFT process & mdash; A second update [J]. Cheminform, 2009, 58(6): 379 | [70] | CrallM D, KellerM W. Targeted self-healing by magnetically guiding microcapsules [J]. ACS Appl. Mater. Interfaces, 2017, 9: 6504 | [71] | FanW J, LiW H, ZhangY, et al. Cooperative self-healing performance of shape memory polyurethane and Alodine-containing microcapsules [J]. RSC Adv., 2017, 7: 46778 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|