Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 68-76    DOI: 10.11902/1005.4537.2018.033
  研究报告 本期目录 | 过刊浏览 |
Al/Si对镍基合金在超临界水中腐蚀行为的影响
谢冬柏1,周游宇2,鲁金涛3,王文2(),朱圣龙2,王福会4
1. 新疆警察学院刑事科学技术系 乌鲁木齐 830011
2. 中国科学院金属研究所 金属腐蚀与防护实验室 沈阳 110016
3. 西安热工研究院有限公司 国家能源清洁高效火力发电能源中心 西安 710032
4. 东北大学 材料科学与工程学院 沈阳 110819
Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water
Dongbai XIE1,Youyu ZHOU2,Jintao LU3,Wen WANG2(),Shenglong ZHU2,Fuhui WANG4
1. Department of Forensic Science and Technology, Xinjiang Police College, Urumqi 830011, China
2. Laboratory of Corrosion and Protection, Institue of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation Technology, Xi′an Thermal Power Research Institute Co., Ltd., Xi′an 710032, China
4. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(12327 KB)   HTML
摘要: 

研究了4种不同Al/Si含量的Ni-Fe-Cr合金在700 ℃/25 MPa超临界水环境中的高温氧化行为,揭示了合金的氧化动力学、表面氧化膜组成及微观结构。结果表明,当Cr含量达到25% (质量分数) 时,Ni-Fe-Cr合金在超临界水中能够形成稳定的保护性Cr2O3膜,合金中Si含量的增加有助于保护性氧化膜的快速形成,而较低的Al含量无法提高保护性氧化膜的化学稳定性。

关键词 镍基合金Al/Si含量超临界水高温氧化    
Abstract

The oxidation behavior of four Ni-Fe-xCr based alloys with different contents of Al/Si was studied in supercritical water at 700 ℃ under 25 MPa. Oxidation kinetics of the alloys was obtained after 200 h exposure. The surface oxide scales were characterized by SEM/EDS and XRD. The results showed that a protective chromia scale formed as the content of Cr increased up to 25% (mass fraction), which was stable during the test. The strengthening phase element-Si was beneficial to the quick formation of protective chromia scale, meanwhile the Al showed little effect on the stability of protective chromia scale.

Key wordsNi-based alloy    Al/Si content    supercritical water    high temperature oxidation
收稿日期: 2018-03-19     
ZTFLH:  TG172  
基金资助:公安部科技强警基础工作专项(2017GABJC11);痕迹检验鉴定技术公安部重点实验室及西安热工研究院有限公司电站清洁燃烧国家工程研究中心
通讯作者: 王文     E-mail: wen@imr.ac.cn
Corresponding author: Wen WANG     E-mail: wen@imr.ac.cn
作者简介: 谢冬柏,男,1973年生,博士

引用本文:

谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 68-76.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.033      或      https://www.jcscp.org/CN/Y2019/V39/I1/68

AlloyCrAlTiSiMoNbWFeMnNi
20Cr9Al200.91.00.020.81.00.5250.4Bal.
20Cr13Al201.31.00.020.81.00.5250.4Bal.
25Cr5Si250.91.00.050.81.00.5250.4Bal.
25Cr2Si250.91.00.020.81.00.525

0.4

Bal.
表1  4种镍基合金的名义成分
图1  合金在超临界水中的氧化增重曲线
图2  20Cr9Al,20Cr13Al,25Cr5Si和25Cr2Si试样在超临界水中氧化不同时间后的XRD谱
图3  20Cr9Al和20Cr13Al试样在超临界水中氧化25 h后的表面形貌及元素分布
图4  20Cr9Al和20Cr13Al试样在超临界水中氧化100 h后的表面形貌及元素分布
图5  25Cr5Si和25Cr2Si试样在超临界水中氧化25 h后的表面形貌及元素分布
图6  25Cr5Si和25Cr2Si试样在超临界水中氧化100 h后的表面形貌及元素分布
图7  20Cr9Al试样在超临界水中氧化200 h后的截面形貌及元素线分布
图8  20Cr13Al试样在超临界水中氧化200 h后的截面形貌及元素线分布
图9  25Cr5Si试样在超临界水中氧化200 h后的截面形貌及元素线分布
图10  25Cr2Si试样在超临界水中氧化50和200 h后的截面形貌
[1] Lin F S, Wang Z Z, Wang B Z, et al. Research, application and development of domestic heat-resistant steels and alloys for power plants [J].J.Chin . Soc. Power Eng., 2010, 30: 235
[1] (林富生, 王治政, 王宝忠等. 中国电站用耐热钢及合金的研制、应用与发展 [J]. 动力工程学报, 2010, 30: 235
[2] Yang F. Speed up the research on new steel to ensure the steady development of ultra supercritical power plants [A]. Electric Power and Energy in China, Seminar on the New Steel for600/1000MW Ultra-supercritical Thermal Power Plants [C]. Yangzhou, 2009
[2] 杨富. 加快超超临界机组用新型钢开发确保超超临界机组稳步发展 [A]. 中国电机工程学会600/1000MW超超临界火电机组新型钢国产化研讨会 [C]. 扬州, 2009
[3] Zhai S H, Gao X L, Chen G F. Analysis of green power generation technologies [J]. Power Syst. Eng., 2007, 23(1): 9
[3] 翟慎会, 高秀丽, 陈桂芳. 环境友好型发电技术的特性分析 [J]. 电站系统工程, 2007, 23(1): 9
[4] Tang F, Dong B, Zhao M. USC unit development and application in China [J]. Elect. Power Constr., 2010, 31(1): 80
[4] 唐飞, 董斌, 赵敏. 超超临界机组在我国的发展及应用 [J]. 电力建设, 2010, 31(1): 80
[5] Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants-steamside oxidation [J]. J. Mater. Eng. Perform., 2006, 15: 255
[6] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
[7] Berthod P, Aranda L, Mathieu S, et al. Influence of water vapour on the rate of oxidation of a Ni-25wt.% Cr alloy at high temperature [J]. Oxid. Met., 2013, 79: 517
[8] Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants [J]. Corros. Sci., 2008, 50: 3056
[9] Zhang Q, Tang R, Li C, et al. Corrosion behavior of Ni-base alloys in supercritical water [J]. Nucl. Eng. Technol., 2009, 41: 107
[10] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
[11] Mougin J, Lucazeau G, Galerie A, et al. Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium [J]. Mater. Sci. Eng., 2001, A308: 118
[12] Chao J, González-Carrasco J L. The role of the surface roughness on the integrity of thermally generated oxide scales. Application to the A12O3/MA956 system [J]. Mater. Sci. Eng., 1997, A230: 39
[13] Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review [J]. J. Supercrit. Fluids, 2004, 29: 1
[14] Plugatyr A, Svishchev I M. Residence time distribution measurements and flow modeling in a supercritical water oxidation reactor: Application of transfer function concept [J]. J. Supercrit. Fluids, 2008, 44: 31
[15] Kritzer P, Boukis N, Dinjus E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures [J]. Corrosion, 2000, 56: 1093
[16] Li M S. High Temperature Corrosion of Metal [M]. Beijing: Metallurgy Industry Press, 2001: 186
[16] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 186
[17] Zhou C G, Yu J S, Gong S K, et al. Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature [J]. Surf. Coat. Technol., 2002, 161: 86
[18] Wu Y, Narita T. Oxidation behavior of the single crystal Ni-based superalloy at 900 ℃ in air and water vapor [J]. Surf. Coat. Technol., 2007, 202: 140
[19] H?nsel M, Quadakkers W J, Young D J. Role of water vapor in chromia-scale growth at low oxygen partial pressure [J]. Oxid. Met., 2003, 59: 285
[20] Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
[21] Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
[22] Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
[23] Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd Ed. Cambridge: Cambridge University Press, 2006
[1] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[2] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[3] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[4] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[5] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[6] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[7] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[8] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[9] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[10] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[13] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[15] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.