Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 287-296    DOI: 10.11902/1005.4537.2014.158
  本期目录 | 过刊浏览 |
局部电化学阻抗方法在腐蚀研究中的应用
续冉,王佳()
Application of Local Electrochemical Impedance Technique in Corrosion Research
Ran XU,Jia WANG()
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(2437 KB)   HTML
摘要: 

局部电化学阻抗 (LEIS) 方法是研究局部腐蚀过程的最新方法之一,它可以向被测电极施加微扰电压,从而感生出交变电流,通过确定金属表面上局部溶液交流电流密度来测量局部阻抗。本文介绍了该技术的发展历史、测量原理,并重点讨论了该技术在腐蚀研究中的应用,最后概括了该技术的特点。

关键词 局部电化学阻抗技术腐蚀应用    
Abstract

Local electrochemical impedance spectroscopy (LEIS) technique is a novel method for the study of local corrosion, which is based on the assumption that the local impedance can be generated by measuring the AC-local-current density in the vicinity of the working electrode in a usual three-electrode cell configuration. From a practical point of view, this was achieved with the use of a dual microelectrode for sensing the local AC-potential gradient, the local current being obtained from the direct application of the Ohm's law. In this paper, the history and principles of this technique were reviewed, while the applications in the field of corrosion research and the characteristics of this method were also discussed.

Key wordslocal electrochemical impedance (LEIS)    corrosion    application
    
基金资助:国家自然科学基金重点项目 (51131005) 资助

引用本文:

续冉,王佳. 局部电化学阻抗方法在腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2015, 35(4): 287-296.
Ran XU, Jia WANG. Application of Local Electrochemical Impedance Technique in Corrosion Research. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 287-296.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.158      或      https://www.jcscp.org/CN/Y2015/V35/I4/287

图1  用于局部交流阻抗的五电极结构示意图[12]
图2  局部电化学阻抗技术装置图[15]
图3  在1 mmol/L Na2SO4溶液中暴露24 h的AZ91合金的SEM像 (黑色和亮色区分别对应α相和β相)[38]
图4  腐蚀电压下在1 mmol/L Na2SO4溶液中暴露2 h的AZ91Mg合金LEIS响应的Nyquist图[38]
图5  沉积物覆盖表面和新鲜暴露表面的LEIS图[40]
图6  在100 mmol/L NaCl中测得开路电压下合金A的Nyquist图 [42]
图7  在100 mmol/L NaCl中测得开路电压下合金B的Nyquist图[42]
[1] Annergren I, Thierry D, Zou F. Localized electrochemical impedance spectroscopy for studying pitting corrosion on stainless steels[J]. J. Electrochem. Soc., 1997, 144(4): 1208
[2] Gabrielli C, Huet F,?Keddam M, et al. A review of the probabilistic aspects of localized corrosion[J]. Corrosion, 1990, 46(4): 266
[3] Wightman R M. Microvoltammetric electrodes[J]. Anal. Chem., 1981, 53(9): 1125A
[4] Sun P, Laforge F O, Mirkin M V. Scanning electrochemical microscopy in the 21st century[J]. Phys. Chem. Chem. Phys., 2007, 9(7): 802
[5] Isaacs H S, Kissel G. Surface preparation and pit propagation in stainless steels[J]. J. Electrochem. Soc., 1972, 119(12): 1628
[6] Bayet E, Huet F, Keddam M, et al. A novel way of measuring local electrochemical impedance using a single vibrating probe[J]. J. Electrochem. Soc., 1997, 144(4): L87
[7] Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: scanning vibrating electrode technique in AC mode[J]. Electrochim. Acta, 1999, 44(24): 4117
[8] Gabrielli C, Joiret S, Keddam M, et al. Development of a coupled SECM-EQCM technique for the study of pitting corrosion on iron[J]. J. Electrochem. Soc., 2006, 153(3): B68
[9] Davoodi A, Pan J, Leygraf C, et al. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM[J]. Appl. Surf. Sci., 2006, 252(15): 5499
[10] Isaacs H S, Kendig M W. Determination of surface inhomogeneities using a scanning probe impedance technique[J]. Corrosion, 1980, 36(6): 269
[11] Schreiber A, Schultze J W, Lohrengel M M, et al. Grain dependent electrochemical investigations on pure iron in acetate buffer pH 6.0[J]. Electrochim. Acta, 2006, 51(13): 2625
[12] Taylor S R. Incentives for using local electrochemical impedance methods in the investigation of organic coatings[J]. Prog. Org. Coat., 2001, 43(1-3): 141
[13] Tang X, Cheng Y F. Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines[J]. Corros. Sci., 2011, 53(9): 2927
[14] Mouanga M, Puiggali M, Tribollet B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[15] Jorcin J, Aragon E, Merlatti C E L, et al. Delaminated areas beneath organic coating: A local electrochemical impedance approach[J]. Corros. Sci., 2006, 48(7): 1779
[16] Zhang N, Sun Z H, Zhang Q, et al. Application of local electrochemical impedance spectroscopy (LEIS) on assessing the environmental failure of organic coatings[J]. Equip. Environ. Eng., 2007, 4(1): 75 (章妮, 孙志华, 张琦等.局部阻抗测试技术在评定有机涂层环境失效中的应用[J]. 装备环境工程, 2007, 4(1): 75)
[17] Lillard R S, Moran P J, Isaacs H S. A novel method for generating quantitative local electrochemical impedance spectroscopy[J]. J. Electrochem. Soc., 1992, 139(4): 1007
[18] Zou F, Thierry D, Isaacs H S. A High-resolution probe for localized electrochemical impedance spectroscopy measurements[J]. J. Electrochem. Soc., 1997, 144(6): 1957
[19] Frateur I, Huang V M, Orazem M E, et al. Experimental issues associated with measurement of local electrochemical impedance[J]. J. Electrochem. Soc., 2007, 154(12): C719
[20] Frateur I, Huang V M, Orazem M E, et al. Local electrochemical impedance spectroscopy: Considerations about the cell geometry[J]. Electrochim. Acta, 2008, 53(25): 7386
[21] Wu S, Orazem M E, Tribollet B, et al. Impedance of a disk electrode with reactions involving an adsorbed intermediate: Local and global analysis[J]. J. Electrochem. Soc., 2009, 156(1): C28
[22] Wu S, Orazem M E, Tribollet B, et al. Impedance of a disk electrode with reactions involving an adsorbed intermediate: experimental and simulation analysis[J]. J. Electrochem. Soc., 2009, 156(7): C214
[23] Ferrari J V, de Melo H I L G, Keddam M, et al. Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2012, 60: 244
[24] Sánchez M, Aouina N, Rose D, et al. Assessment of the electrochemical microcell geometry by local electrochemical impedance spectroscopy of copper corrosion[J]. Electrochim. Acta, 2012, 62: 276
[25] Pilaski M, Hamelmann T, Moehring A, et al. Impedance spectroscopy in micro systems[J]. Electrochim. Acta, 2002, 47(13): 2127
[26] Krawiec H, Vignal V, Oltra R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions[J]. Electrochem. Commun., 2004, 6(7): 655
[27] Bayet E, Huet F, Keddam M, et al.Adaptation of the scanning vibrating electrode technique to AC mode: Local electrochemical impedance measurement[J]. Mater. Sci. Forum, 1998, 57: 289
[28] Wittmann M W, Leggat R B, Taylor S R. The detection and mapping of defects in organic coatings using local electrochemical impedance methods[J].?J. Electrochem. Soc., 1999, 146(11): 4071
[29] Huang V M, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of a disk electrode with faradaic reactions a global and local impedance analysis[J]. J. Electrochem. Soc., 2007, 154(2): C99
[30] Huang V M, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of an ideally polarized blocking electrode a global and local impedance analysis[J]. J. Electrochem. Soc., 2007, 154(2): C81
[31] Huang V M, Vivier V, Frateur I, et al. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior[J]. J. Electrochem. Soc., 2007, 154(2): C89
[32] Schneider I A, Kuhn H, Wokaun A, et al. Study of water balance in a polymer electrolyte fuel cell by locally resolved impedance spectroscopy[J]. J. Electrochem. Soc., 2005, 152(12): A2383
[33] Schneider I A, Kramer D, Wokaun A, et al. Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy[J]. Electrochem. Commun., 2005, 7(12): 1393
[34] Bandarenka A S, Eckhard K, Maljusch A, et al. Localized electrochemical impedance spectroscopy: visualization of spatial distributions of the key parameters describing solid/liquid interfaces[J]. Anal. Chem., 2013, 85(4): 2443
[35] Montoya R, García-Galván F R, Jiménez-Morales A, et al. Effect of conductivity and frequency on detection of heterogeneities in solid/liquid interfaces using local electrochemical impedance: Theoretical and experimental study[J]. Electrochem. Commun., 2012, 15(1): 5
[36] Xiao K, Zhang X, Dong C, et al. Localized electrochemical impedance spectroscopy study on the corrosion behavior of Fe-Cr alloy in the solution with Cl- and SO42-[J]. J. Wuhan Univ. Technol. Mater., 2012, 27(1): 27
[37] Jorcin J, Orazem M E, Pébère N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2006, 51(8): 1473
[38] Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J]. Corros. Sci., 2009, 51(8): 1789
[39] Jin T Y, Cheng Y F. In-situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel[J]. Corros. Sci., 2011, 53(2): 850
[40] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution[J]. Corros. Sci., 2008, 50(11): 3116
[41] Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electrochim. Acta, 2011 56(3): 1676
[42] Annergren I, Zou F, Thierry D. Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth[J]. Electrochim. Acta, 1999, 44(24): 4383
[43] de Lima-Neto P, Farias J P, Herculano L F G, et al. Determination of the sensitized zone extension in welded AISI 304 stainless steel using non-destructive electrochemical techniques[J]. Corros. Sci., 2008, 50(4): 1149
[44] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electroche-mical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(6): 2831
[45] Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings[J]. Electrochim. Acta, 1997, 42(20-22): 3293
[46] Zhong C, Tang X, Cheng Y F. Corrosion of steel under the defected coating studied by localized electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(14): 4740
[47] Dong C F, Fu A Q, Li X G, et al. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection[J]. Electrochim. Acta, 2008, 54(2): 628
[48] Snihirova D, Liphardt L, Grundmeier G, et al. Electrochemical study of the corrosion inhibition ability of “smart” coatings applied on AA2024[J]. J. Solid State Electrochem., 2013, 17: 2183
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.