Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 39-46    DOI: 10.11902/1005.4537.2016.248
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of Hot Rolled Cr/Ni Micro-alloying High Strength Weathering Steel
Yue WANG1, Zili LIU1(), Xiqin LIU1, Shoudong ZHANG1, Qinchao TIAN2
1 Institute of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Institute of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Download:  HTML  PDF(5517KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and corrosion resistance of hot rolled Cr/Ni micro-alloyed high strength weathering steels Q500H and Q700H were studied by means of electrochemical test, immersion test, SEM, EDS and XRD. Results showed that the two hot rolled high strength weathering steels present the same microstructure composed of pearlite and ferrite, while Cr was distributed evenly in the above mentioned two phases, and Ni was more rich in ferrite phase. The Q700H weathering steel with higher Cr- and Ni-content showed lower annual corrosion rate. After immersion in 3.5%(mass fraction) NaCl solution for 60 d, the corrosion current density of the two steels increased, but Q700H weathering steel has higher charge transfer resistance and smaller corrosion current density. The corrosion pits on the surface of Q700H steel was smaller after 150 d immersion. The increase of Cr- and Ni-content promoted the for mation of α-FeOOH, which was dense and stable. Cr was concentrated in the inner rust layer, Ni was enriched at the interface between the substrate and the rust layer, the higher the content of Cr and Ni was, the much obvious enrichment they had.

Key words:  hot rolled low alloy high strength weathering steel      Cr and Ni micro-alloying      corrosion resistance     
Received:  27 December 2016     
ZTFLH:  TG174.2  

Cite this article: 

Yue WANG, Zili LIU, Xiqin LIU, Shoudong ZHANG, Qinchao TIAN. Microstructure and Corrosion Resistance of Hot Rolled Cr/Ni Micro-alloying High Strength Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 39-46.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.248     OR     https://www.jcscp.org/EN/Y2018/V38/I1/39

Steel C Si Mn S P Cu Cr Ni V+Al+N+Ti Fe
Q500H 0.128 0.34 0.97 0.004 0.006 0.33 0.52 0.15 0.1 Bal.
Q700H 0.197 0.34 0.97 0.004 0.006 0.33 0.78 0.61 0.1 Bal.
Table 1  Chemical compositions of Q500H and Q700H steels (mass fraction / %)
Fig.1  Schematic of suspension of tested steel samples in 3.5%NaCl solution
Fig.2  SEM images of hot rolled Q500H (a) and Q700H (b, c) steels, and EDS linear scannings of Ni and Cr cross the phase boundary of Q700H steel as shown in Fig.2c (d)
Steel Surface area S / cm2 Before corrosionW0 / g AftercleaningW1 / g Mass lossΔW / g Annual corrosion rate / mma-1
Q500H 4.3460 3.3612 3.2024 0.1588 0.1117
Q700H 4.7801 3.6032 3.4362 0.1670 0.1068
Table 2  Corrosion rates of Q500H and Q700H steels during 150 d immersion in 3.5%NaCl solution
Fig.3  Polarization curves of Q500H and Q700H steels before and after immersion in 3.5%NaCl solution for 60 d
Steel Ecorr / V Icorr×10-5 / Acm-2
Q500H(naked) -0.6063 0.4431
Q700H(naked) -0.5412 0.4468
Q500H(naked)* -0.8165 1.7910
Q700H(naked)* -0.7678 0.8321
Table 3  Fitting results of polarization curves of Q500H and Q700H steels
Steel Time / d Rs / Ωcm2 CPE, Yo / (Ω-1cm-2sn) n Rct / Ωcm2
Q500H 0 8.141 7.200×10-4 0.7728 1387
10 9.213 1.895×10-3 0.8001 1394
60 10.370 9.160×10-4 0.8012 1501
Q700H 0 8.472 2.910×10-4 0.7393 1053
10 8.665 2.733×10-3 0.7733 1344
60 7.872 2.560×10-3 0.7836 1578
Table 4  Fitting results of EIS of Q500H and Q700H steels after immersion in 3.5%NaCl solution for different time
Fig.4  Nyquist diagrams of Q500H and Q700H steels after immersion in 3.5%NaCl solution for 0 d (a), 10 d (b), 60 d (c) and corresponding equivalent circuit (d)
Fig.5  Macroscopic surface morphologies of Q500H (a, b) and Q700H (c, d) steels before (a, c) and after (b, d) removal of corrosion products formed during immersion in 3.5%NaCl solution for 150 d
Fig.6  XRD patterns of the corrosion products formed on Q500H and Q700H steels after immersion in 3.5%NaCl solution for 150 d
Fig.7  Rust morphologies with different immersion times and the EDS analysis for the cross section of therust layer: (a) Q500H steel, 5 d; (b) Q700H steel, 5 d; (c) Q500H steel, 10 d; (d) Q700H steel, 10 d; (e) the cross section morphology of Q500H for 150 d; (f) the cross section morphology of Q700H for 150 d; (g) the element distribution of Cr for Q500H; (h) the element distribution of Ni for Q500H; (i) the element distribution of Cr for Q700H; (j) the element distribution of Ni for Q700H
[1] Kuziak R, Kawalla R, Waengler S.Advanced high strength steels for automotive industry[J]. Arch. Civ. Mech. Eng., 2008, 8: 103
[2] Shanmugam S, Ramisetti N K, Misra R D K, et al. Microstructure and high strength-toughness combination of a new 700 MPa Nb-microalloyed pipeline steel[J]. Mater. Sci. Eng., 2008, A478: 26
[3] Morcillo M, Chico B, Díaz I, et al.Atmospheric corrosion data of weathering steels. A review[J]. Corros. Sci., 2013, 77: 6
[4] Zhang R Y, Shi D Y, Jiang F, et al.Experimental on corrosion of 3Cr steel in CO2 environment[J]. Corros. Prot., 2012, 33: 147(张仁勇, 施岱艳, 姜放等. 3Cr钢在CO2环境中的腐蚀试验研究[J]. 腐蚀与防护, 2012, 33: 147)
[5] Choi Y S, Shim J J, Kim J G.Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J]. J. Alloy. Compd., 2005, 391: 162
[6] Zhou Y L, Chen J, Xu Y, et al.Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment[J]. J. Mater. Sci. Technol., 2013, 29: 168
[7] Chen Y Y, Tzeng H J, Wei L I, et al.Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions[J]. Corros. Sci., 2005, 47: 1001
[8] Hu J D, Liu X Q, Liu Z L, et al.Effects of Cr addition on corrosion resistance of thin-wall high strength pile pipe steels[J]. Corros. Prot., 2014, 35: 1027(胡金东, 刘希琴, 刘子利等. 铬含量对薄壁高强度桩管钢腐蚀性能的影响[J]. 腐蚀与防护, 2014, 35: 1027)
[9] Yang J H, Liu Q Y, Wang X D, et al.The progress of investigation on weathering steel and its rust layer[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 367(杨景红, 刘清友, 王向东等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27: 367)
[10] Diaz I, Cano H, de la Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity[J]. Corros. Sci., 2013, 76: 348
[11] Liu R, Chen X P, Wang X D, et al.Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment[J]. Hot Work. Technol., 2014, 40(20): 19(刘芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响[J]. 热加工工艺, 2014, 40(20): 19)
[12] Liu X Q, Liu Z L, Hu J D, et al.The corrosion behavior of Cu/Cr containing tube pile steel in half-immersion environment[J]. Anti Corros. Methods Mater., 2016, 63: 281
[13] Zhang Y H.Study on CrNb microalloying rail steels [D]. Beijing: China Academy of Railway Sciences, 2001(张银花. CrNb微合金轨钢的研究 [D]. 北京: 铁道部科学研究院, 2001)
[14] Melchers R E.Effect on marine immersion corrosion of carbon content of low alloy steels[J]. Corros. Sci., 2003, 45: 2609
[15] Wang L W, Du C W, Liu Z Y, et al.Influences of Fe3C and pearlite on the electrochemical corrosion behaviors of low carbon ferrite steel[J]. Acta Metall. Sin., 2011, 47: 1227(王力伟, 杜翠薇, 刘智勇等. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响[J]. 金属学报, 2011, 47: 1227)
[16] Fang Z H, Lian J F, Zhang L, et al.Use of a micro electrode to study the electrochemical behaviour of the microphases in 20 steel and 16Mn steel[J]. Corros. Sci. Prot. Technol., 1996, 8(3): 25(方智赫, 连建峰, 张琳等. 用微电极研究20钢和16Mn钢微区相电化学行为[J]. 腐蚀科学与防护技术, 1996, 8(3): 25)
[17] Sun M, Xiao K, Dong C F, et al.Electrochemical behaviors of ultra high strength steels with corrosion products[J]. Acta Metall. Sin., 2011, 47: 442(孙敏, 肖葵, 董超芳等. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47: 442)
[18] Shi J J, Sun W.Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete[J]. Corros. Sci. Prot. Technol., 2011, 23: 387(施锦杰, 孙伟. 等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J]. 腐蚀科学与防护技术, 2011, 23: 387)
[19] Xia Y, Cao F H, Chang L R, et al.Corrosion micro-and macro-electrochemical behavior of rusted carbon steel and weathering steel[J]. Chem. J. Chin. Univ., 2013, 34: 1246(夏妍, 曹发和, 常林荣等. 锈层下碳钢和耐候钢的微区和宏观腐蚀电化学行为[J]. 高等学校化学学报, 2013, 34: 1246)
[20] Cao G L, Li G M, Chen S, et al.Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels[J]. Acta Metall. Sin., 2010, 46: 748(曹国良, 李国明, 陈珊等. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较[J]. 金属学报, 2010, 46: 748)
[21] Wang C, Cao G W, Pan C, et al.Atmospheric corrosion of carbon steel and weathering steel in three environments[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39(汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究[J]. 中国腐蚀与防护学报, 2016, 36: 39)
[22] Hao L, Zhang S X, Dong J H, et al.Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion[J]. Metall. Mater. Trans., 2012, 43A: 1724
[23] Wang Z F, Li P H, Guan Y, et al.The corrosion resistance of ultra-low carbon bainitic steel[J]. Corros. Sci., 2009, 51: 954
[24] Cano H, Neff D, Morcillo M, et al.Characterization of corrosion products formed on Ni 2.4 wt%-Cu 0.5 wt%-Cr 0.5 wt% weathering steel exposed in marine atmospheres[J]. Corros. Sci., 2014, 87: 438
[25] Bhagavathi L R, Chaudhari G P, Nath S K.Mechanical and corrosion behavior of plain low carbon dual-phase steels[J]. Mater. Des., 2011, 32: 433
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!