Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 525-534    DOI: 10.11902/1005.4537.2014.227
Current Issue | Archive | Adv Search |
Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy
Jingli HAO1,Yongjing GAO1,Zehua DONG1,2()
1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Chemical and Food Sciences, Hubei Institute of Arts, Xiangyang 433500, China
Download:  HTML  PDF(1344KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A complex chemical conversion film of CeO2-siloxane was prepared on AA6063 aluminum alloy by successively dipping the alloy in CeCl3 aqueous solution and then in bis-[triethoxysilypropyl] tetra-sulfide (BTST) alcohol solution. Electrochemical tests show that the polarization resistance of the bare Al alloy in 3%NaCl solution can be enhanced by an order of magnitude with the CeO2 conversion film alone. But the complex film can rise both the polarization resistance by two orders of magnitude and the pitting potential by ca 400 mV. The enhancement of corrosion resistance of the alloy is limited by applying either CeO2 conversion film or BTST film alone, while a lot of pits can be observed on the Al electrode surface after immersed in 3%NaCl for 300 h. However, after the CeO2/BTST complex film was formed, no noise peaks can be found from the ECN curves when Al electrode immersed in 3%NaCl for 168 h, indicating that the complex film has a strong inhibition effect on the propagation of metastable- and steady-pits on the aluminium alloy. Since CeO2 can be absorbed preferentially on the second phase (AlFeSi), it can inhibit the growth of metastable pits; and the siloxane has a high binding energy with Al—O bond, therefore, the synergistic effect of CeO2 and siloxane may be beneficial to the excellent protectiveness of the complex film.

Key words:  aluminium alloy      pitting corrosion      cerium      siloxane      conversion film     

Cite this article: 

Jingli HAO,Yongjing GAO,Zehua DONG. Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 525-534.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.227     OR     https://www.jcscp.org/EN/Y2015/V35/I6/525

Fig.1  SEM images of AA6063 aluminium alloy before (a) and after (b) immersion in 3%NaCl solution for 24 h and EDX result of point A in Fig.1a (c)
Fig.2  Polarization curves (a) and EIS plots (b) of Al alloy electrode with different conversion films in 3%NaCl solution at the early immersion stage
Fig.3  ECN of Al alloy (a, b), cerium conversion film (c, d), and cerium /siloxane complex film (e, f) after immersion in 3%NaCl solution for 1 h (a, c, e, g) and 168 h (b, d, f, h)
Fig.4  Evolutions of noise resistance (a) and nucleation rate (b) for Al alloy electrode with different conversion films in 3%NaCl solution
Fig.5  Corrosion morphologies of Al alloy samples without (a) and with cerium salt (b), siloxane (c) and cerium salt/siloxane complex (d) conversion films after immersed in 3%NaCl solution for 168 h
Fig.6  Polarization curves (a) and EIS polts (b) of Al alloy samples with complex conversion films prepared by different processes in 3%NaCl solution at the early immersion stage
Fig.7  Corrosion morphologies of Al alloy samples without (a) and with siloxane then cerium salt complex film (b), siloxane/cerium salt co-deposition film (c) and cerium salt then siloxane complex film (d) after immersed in 3%NaCl solution for 312 h
Fig.8  Schematic diagrams of cerium salt/siloxane complex film through the process of co-deposition (a) and step-by-step deposition of cerium salt and siloxane (b)
[1] Zhou H R, Li X G, Dong C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film[J].Equip. Environ. Eng., 2006, 3(1): 1
[1] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[2] Davó B, Damborenea J J D. Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.56%NaCl[J]. Electrochim. Acta, 2004, 49(27): 4957
[3] Mishra A K, Balasubramaniam R.Corrosion inhibition of aluminium by rare earth chlorides[J]. Mater. Chem. Phys., 2007, 103(2):385
[4] Mishra A K, Balasubramaniam R.Corrosion inhibition of aluminium alloy AA 2014 by rare earth chlorides[J]. Corros. Sci., 2007, 49(3): 1027
[5] Conde A, Arenas M A, Frutos A, et al.Effective corrosion protection of 8090 alloy by cerium conversion coatings[J]. Electrochim. Acta, 2008, 53(26): 7760
[6] Ruan H M, Dong Z H, Shi W, et al.Effect of inhibitors on pitting corrosion of AA6063 aluminium alloy based on electrochemical no-ise[J]. Acta Phys.-Chim. Sin., 2012, 28(1): 2097
[6] (阮红梅, 董泽华, 石维等. 基于电化学噪声研究缓蚀剂对AA6063铝合金点蚀的影响[J]. 物理化学学报, 2012, 28(1): 2097)
[7] Hinton B J.Corrosion inhibition with rare earth metal salts journal of alloys and compounds[J]. J. Alloys Compd.,1992, 180(1): 15
[8] Yu X W, Cao C N, Lin H C, et al.Review of rare earth conversion coating of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2000, 20(5): 298
[8] (于兴文, 曹楚南, 林海潮等. 铝合金表面稀土转化膜研究进展[J].中国腐蚀与防护学报, 2000, 20(5): 298)
[9] Davenport A J, Isaacs H S, Kendig M W.Investigation of the role of cerium compounds as corrosion inhibitors for aluminium[J]. Corros. Sci., 1991, 32(5): 653
[10] Hinton B, Arnott D, Ryan N.Cerium conversion coatings for the corrosion protection of aluminium[J]. Mater. Forum, 1986, 9(1): 162
[11] Xiao W, Man R L, Miao C, et al.Study on corrosion resistance of the BTESPT silane cooperating with rare earth cerium on the surface of aluminium-tube[J]. J. Rare Earths, 2010, 28(1): 117
[12] Xiao W, Man R L, Peng T L, et al.Preparation and properties of silane-rare earth composite coating on surface of aluminum tube[J]. Chin. J. Rare. Met., 2010, 2(34): 191
[12] (肖围, 满瑞林, 彭天兰等. 铝管表面硅烷稀土复合膜的制备及性能研究[J]. 稀有金属, 2010, 2(34): 191)
[13] Guo Z C, Wang Y F, Wang R M.Study of anticorrosion of Bis-[triethoxysilylpropyl]tetrasulfide silane films on surface of aluminum alloy[J]. J. Mater. Prot., 2006, 38(12): 47
[13] (郭增昌, 王云芳, 王汝敏. 铝合金表面双-[3-(三乙氧基)硅丙基] 硫化物转化膜的耐蚀性研究[J]. 材料保护, 2006, 38(12): 47)
[14] Abel M L, Digby R P, Fletcher I, et al.Evidence of specific interaction between γ-glycidoxypropyltrimethoxysilane and oxidized aluminium using high-mass resolution ToF-SIMS[J]. Surf. Interface Anal., 2000, 29(2): 115
[15] Kim J, Wong P C, Wong K C, et al.Adsorption of BTSE and γ-GPS organosilanes on different microstructural regions of 7075-T6 aluminium alloy[J]. Appl. Surf. Sci., 2007, 253(6): 3133
[16] Susac D, Sun X, Mitchell K A R. Adsorption of BTSE and γ-APS organosilanes on different microstructural regions of 2024-T3 aluminium alloy[J]. Appl. Surf. Sci., 2003, 207(1): 40
[17] Pantoja M, Díaz-Benito B, Velasco F, et al.Analysis of hydrolysis process of γ-methacryloxypropyl-trimethoxysilane and its influence on the formation of silane coatings on 6063 aluminium alloy[J]. Appl. Surf. Sci., 2009, 255(12): 6386
[18] van Ooij W J, Zhu D, Stacy M, et al. Corrosion protection properties of organofunctional silanes-an overview[J]. Tsinghua Sci. Tec-hnol., 2005, 10(6): 639
[19] Raps D, Hack T, Wehr J, et al.Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024[J]. Corros. Sci., 2009, 51(5): 1012
[20] Zhu D, van Ooij W J. Corrosion protection of AA2024-T3 by bis-[3-(triethoxysilyl)propyl] tetrasulfide in sodium chloride solution: Part 2: Mechanism for corrosion protection[J]. Corros. Sci., 2003, 45(10): 2177
[21] Zhu D, van Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane[J]. Prog. Org. Coat., 2004, 49(1): 42
[22] Correa P S, Malfatti C F, Azambuja D S.Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane dopedwith cerium ions[J]. Prog. Org. Coat., 2011, 72(4): 739
[23] Zhang J T, Yang C Y, Pan L, et al.Electrochemical study of corrosion resistance of cerium nitrate doped silane-based hybrid films on aluminum alloy 2Al2[J]. Acta Metall. Sin., 2008, 44(11): 1372
[23] (张金涛, 杨春勇, 潘亮等. 2A12铝合金表面铈盐掺杂硅烷杂化膜在3,5%NaCl溶液中耐蚀性能的电化学研究[J]. 金属学报, 2008, 44(11): 1372)
[24] Naderi R, Fedel M, Deflorian F, et al.Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol-gel layer applied on pure aluminium[J].Surf. Coat. Technol., 2013, 224: 93
[25] Palomino L M, Suegama P H, Aoki I V, et al.Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3[J]. Corros. Sci., 2009, 51(6): 1238
[26] Osborne J H, Blohowiak K Y, Taylor S, et al.Testing and evaluation of nonchromated coating systems for aerospace applications[J]. Prog. Org. Coat., 2001, 41(4): 217
[27] Wu L K, Liu L, Li J, et al.Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl] tetra-sulphide films on AA2024-T3 (aluminium alloy) for corrosion protection[J]. Surf. Coat. Technol., 2010, 204(23): 3920
[28] Malfatti C F, Menezes T, Radtke C, et al.The influence of cerium ion concentrations on the characteristics of hybrid films obtained on AA2024-T3 aluminium alloy[J]. Mater. Corros., 2012, 63(9): 819
[29] Xiao W, Man R L.A study of preparation and properties of BTESPT silane-rare earth composite coating on aluminum-tube surface[J]. Electroplat. Pollut. Control, 2009, 29(5): 30
[29] (肖围, 满瑞林. 铝管表面BTESPT硅烷稀土复合膜的制备及耐蚀性的研究[J]. 电镀与环保, 2009, 29(5): 30)
[30] Shi H W, Liu F C, Han E-H.Corrosion behavior of sol-gel coatings doped with cerium salts on 2024-T3 aluminum alloy[J]. Mater. Chem. Phys., 2010, 124(1): 291
[31] Zhu D, van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl) propyl] tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3[J]. Corros. Sci., 2003, 45(10): 2163
[32] Montemor M, Trabelsi W, Zheludevich M, et al.Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates[J]. Prog. Org. Coat., 2006,57(1): 67
[33] Montemor M, Pinto R, Ferreira M.Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles[J]. Electrochim. Acta, 2009, 54(22): 5179
[34] Trabelsi W, Triki E, Dhouibi L, et al.The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates[J]. Surf. Coat. Technol., 2006, 200(14): 4240
[35] Montemor M, Ferreira M.Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy[J]. Electrochim. Acta, 2007, 52(27): 7486
[36] Palanivel V, Huang Y, van Ooij W J. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution[J]. Prog. Org. Coat., 2005, 53(2): 153
[37] Cambon J B, Ansart F, Bonino J P, et al.Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol-gel coating on martensitic stainless steel[J]. Prog. Org. Coat., 2012, 75(4): 486
[38] Garcia-Heras M, Jimenez-Morales A, Casal B, et al.Preparation and electrochemical study of cerium-silica sol-gel thin films[J]. J. Alloys Compd., 2004, 380(1): 219
[39] Li G Q, Li D.Rare-earth conversion coatings for aluminum alloys[J]. Mater. Eng., 1998, (7): 3
[39] (李国强, 李荻. 铝合金稀土转化膜的研究进展[J]. 材料工程,1998, (7): 3)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[9] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[10] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[11] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[12] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[13] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[14] Yongqi TAO,Gang LIU,Yesheng LI,Zhixiang ZENG. Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[15] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
No Suggested Reading articles found!