Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (2): 124-128    
  会议论文 本期目录 | 过刊浏览 |
电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响
顾宝珊1;刘建华2
1. 中国钢研科技集团有限公司先进金属材料涂镀国家工程实验室北京100081
2. 北京航空航天大学材料科学与工程学院 北京 100083
A RESEARCH ON pH DURING THE PROCESSION OF THE CERIUM(III) FILM FORMATION OF ALUMINUM ALLOYS BY EIS
GU Baoshan1; LIU Jianhua2
1. National Engineering Laboratory for Advanced Coatings Technology of Metal Material;  China Iron & Steel Research Institute Group; Beijing 100081
2. School of Materials Science and Engineering; Beihang University; Beijing 100083
全文: PDF(767 KB)  
摘要: 

将B95铝合金浸泡在0.01 mol/L的CeCl3溶液中,应用电化学阻抗谱(EIS)技术,连续对B95铝合金表面进行电化学阻抗测试。通过连续测试B95铝合金在不同pH值的0.01 mol/L CeCl3溶液中铈盐转化膜的形成过程中电化学阻抗谱的变化,结合等效电路解析研究溶液pH值的变化对B95铝合金稀土转化膜成膜过程的影响机制。研究表明,在pH=3.0时,无法形成Ce转化膜;在
pH在4.0~6.0范围内,H+离子浓度高有利于铝合金表面溶解活化,促进成膜第一阶段的进行,但对Ce(III)的氢氧化物和氧化物的沉积不利;随着pH值提高,铝合金的溶解活化速度下降,影响膜的形成阶段,但更有利于Ce(III)的氢氧化物和氧化物的沉积,对膜的厚度、致密性有利。在实验范围内(在中性或弱酸性溶液中),pH值越高,形成的转化膜耐蚀性越好。

关键词 铝合金电化学阻抗Ce转化膜pH值    
Abstract

Electrochemical impedance spectroscope (EIS) of B95 aluminum alloy in 0.01 mol/L CeCl3 solution was investigated to study the film formation. The changes of EIS in the film formation help to study the influence of pH on the film formation of B95 aluminum alloys. Followed is an analysis on the tested EIS based on equivalent circuit. The result shows that Ce conversion coating can not be formed when B95 aluminum alloy is in 0.01 mol/L CeCl3 solution at the pH=3.0 Increaing the [H+] of solution will do good to the dissolution and activation of aluminum alloy, and accelerate the first stage, but to disadvantage the formation of Ce(III) hydrate and oxide. As the pH increases, the rate of aluminum alloy dissolution and activation will decrease. Such decrease will affect  the film formation stage. But it is good for the aggradation of the Ce(III) hydrate and oxide, and  the thickness and the compactness of the film. In neutral or subacidity solution, increasing the pH of solution will do good to the final formation of Ce(III) conversion coating.

Key wordsaluminium alloys    electrochemical impedance spectroscope(EIS)    cerium conversion coating    pH
收稿日期: 2009-11-03     
ZTFLH: 

TG174

 
通讯作者: 顾宝珊     E-mail: gubs@263.net
Corresponding author: GU Baoshan     E-mail: gubs@263.net
作者简介: 顾宝珊,男,1967年生,教授级高级工程师,博士,研究方向为金属材料表面处理及金属腐蚀与防护

引用本文:

顾宝珊;刘建华. 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 124-128.
GU Bao-Shan. A RESEARCH ON pH DURING THE PROCESSION OF THE CERIUM(III) FILM FORMATION OF ALUMINUM ALLOYS BY EIS. J Chin Soc Corr Pro, 2010, 30(2): 124-128.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I2/124

[1] Hinton B R W. The inhibition of aluminum corrosion by cerium cations [J]. Met. Forum, 1984, 7(4): 211-217
[2] Hinton B R W. The inhibition of aluminum alloy corrosion by rare earth metal cations [J]. Corros. Aust., 1985, 210(3): 12-17
[3] Buldwin K R, Lane P L, Hewins M A H, et al. Metallic cations as corrosion inhibitors for aluminum-copper alloys [A]. UK Ministry of Defence, Royal Aircraft Establishment Technical Report 87052 [C]. 1987
[4] Mansfeld F, Lin S, Kim S, et al. Surface modification of Al alloys and Al-based metal-matrix composites by chemical passivation [J]. Electrochem. Acta, 1989, 34(8): 1123-1132
[5] Arnott D R. Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy [J]. Appl. Surf.Sci., 1985, 22/23: 236-251
[6] Hiton B R W. Corrosion inhibition with rare earth metal salts [J]. J. Alloy Compd., 1992, 180: 15-19
[7] Hinton B R W , Arnott D R , Ryan N E. Cerium conversion coating for the corrosion protection of aluminum [J]. Met. Forum, 1986, 9(3): 162-173
[8] Gu B S, Liu J H, Ji X C. Corrosion inhibition mechanism of cerium(III) for aluminum alloy [J], J. Chin. Soc. Corros.Prot., 2006, 26(1): 53-58
    (顾宝珊, 刘建华, 纪晓春. 铈盐对铝合金的缓蚀机理研究 [J]. 中国腐蚀与防护学报,2006, 26(1):53-58)
[9] Gu B S,Liu J H. Corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique [J]. J. Rare Earths, 2006,24(1):89-96
[10] Wang X D, Wu S M, Liu Y F, et al.  An AC impedance characteristics of the cerium oxide film formed on the aluminum surface [J]. J. Univ. Sci. Technol. Beijing, 2001, 23(4): 320-323
     (王新东,吴世民,刘艳芳等. 用电化学阻抗法研究铝合金表面稀土转化膜 [J]. 北京科技大学学报,2001, 23(4): 320-323)
[11] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press,2002:81-82
     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社,2002:81-82)
[12] Gu B S, Liu J H. Cerium(III) film formation process for aluminum alloys observed with electrochemical impedance spectroscopy [J]. J. Chin. Rare Earth Soc., 2007, 25(2): 210-217
     (顾宝珊, 刘建华. 铈盐对铝合金的成膜过程电化学交流阻抗研究 [J]. 中国稀土学报,2007,25(2):210-217)
[13] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press,2002:92-95
     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京:科学出版社,2002:92-95)

[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[8] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[11] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[12] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[15] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.