Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 185-191    DOI: 10.11902/1005.4537.2018.052
  研究报告 本期目录 | 过刊浏览 |
添加Gd对AM60镁合金耐腐蚀性能的影响
刘丽,于思荣()
中国石油大学 (华东) 机电工程学院 青岛 266580
Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy
Li LIU,Sirong YU()
College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(9565 KB)   HTML
摘要: 

采用区域凝固法制备AM60和AM60Gd1.0镁合金。采用析氢实验和电化学实验研究了添加Gd对AM60合金的显微结构和在0.9% (质量分数) NaCl溶液和模拟人体体液中的耐腐蚀性能的影响。结果表明,AM60合金由α-Mg相和β-Mg17Al12相组成,Gd的添加促进了Al2Gd相的生成;同时提高了合金的腐蚀电位,降低了腐蚀电流密度。在0.9%NaCl溶液中,AM60合金和AM60Gd1.0合金的阻抗谱均由一个高频容抗弧和一个低频感抗弧组成;在模拟人体体液中,两种合金的阻抗谱由两个高频容抗弧组成;在同一浸泡时间下,AM60Gd1.0合金阻抗谱的半径大于AM60合金的。Gd的添加提高了AM60合金的耐蚀性。

关键词 AM60镁合金Gd腐蚀速率极化电化学阻抗    
Abstract

AM60 and AM60Gd1.0 magnesium alloys were prepared by zone solidification purifying method. Microstructures and phase compositions of the alloys were analyzed. The corrosion resistance of the alloys in 0.9% (mass fraction) NaCl solution and simulated body fluid were examined by hydrogen evolution test and electrochemical test. Results show that AM60 alloy composed of α-Mg and β-Mg17Al12, while Al2Gd was found for AM60Gd1.0. The corrosion rate of AM60Gd1.0 alloy was lower than that of AM60 alloy. The Ecorr of AM60Gd1.0 alloy was much positive than that of AM60 alloy due to the addition of 1.0%Gd. The Icorr of AM60Gd1.0 alloy was smaller than that of AM60 alloy. In NaCl solution, the EIS curves of AM60 and AM60Gd1.0 alloy all composed of a capacitive loop and an inductive loop. In SBF, the EIS curves of the alloys composed of two capacitive loops. Being soaked in NaCl solution for the same period of time, the radius of the EIS curve of AM60Gd1.0 alloy was larger than that of AM60 alloy.

Key wordsAM60 magnesium alloy    Gd    corrosion rate    polarization    electrochemical impedance
收稿日期: 2018-04-20     
ZTFLH:  TG178  
基金资助:中央高校基本科研业务费专项资金(16CX06020A)
通讯作者: 于思荣     E-mail: SirongYu2014@126.com
Corresponding author: Sirong YU     E-mail: SirongYu2014@126.com
作者简介: 刘丽,女,1988年生,博士生

引用本文:

刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
Li LIU, Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 185-191.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.052      或      https://www.jcscp.org/CN/Y2019/V39/I2/185

AlloyAlMnGdFeNiCuMg
AM605.870.3200.0020.0020.002Bal.
AM60Gd1.05.910.291.120.0010.0010.001Bal.
表1  AM60和AM60Gd1.0镁合金的成分
图1  AM60和AM60Gd1.0合金的金相照片
图2  AM60和AM60Gd1.0合金的XRD谱
图3  AM60和AM60Gd1.0合金在模拟人体体液中浸泡7 d后表面腐蚀产物的XRD谱
图4  AM60和AM60Gd1.0合金在0.9%NaCl溶液中浸泡7 d后的宏观腐蚀形貌
图5  AM60和AM60Gd1.0合金在0.9%NaCl溶液中浸泡7 d后的微观腐蚀形貌
图6  AM60和AM60Gd1.0合金在模拟人体体液中浸泡7 d之后的宏观腐蚀形貌
图7  AM60和AM60Gd1.0合金在模拟人体体液中浸泡7 d后的腐蚀形貌
SolutionAlloyEcorr / mVIcorr / mA·cm-2Epit / mVEpit-Ecorr / mV
0.9%NaClAM60-1336.093.02×10-2-1081.65254.44
AM60Gd1.0-1225.021.25×10-2-396.45828.57
Simulated body fluidAM60-1367.404.50×10-2-1047.24320.16
AM60Gd1.0-1271.641.92×10-2-959.75311.89
表2  两种镁合金在不同溶液中的腐蚀电位、腐蚀电流密度和点蚀电位
图8  两种镁合金在0.9%NaCl溶液和模拟人体体液中的极化曲线
图9  AM60和AM60Gd1.0合金在0.9%NaCl溶液中的电化学阻抗谱
图10  AM60和AM60Gd1.0合金在模拟人体体液中的电化学阻抗谱
[1] Qiao Z X, Shi Z M, Hort N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting [J]. Corros. Sci., 2012, 61: 185
[2] Hu Y, Rao L, Li Q P. Effects of Si on microstructures and corrosion properties of AM60 magnesium alloy [J]. Ordnance Mater. Sci. Eng., 2013, 36(4): 23
[2] 胡勇, 饶丽, 黎秋萍. Si对AM60镁合金组织和腐蚀性能的影响 [J]. 兵器材料科学与工程, 2013, 36(4): 23)
[3] Zhou X H, Wei Z L, Chen Q R, et al. Corrosion behavior of die-cast Mg-9Al magnesium alloy with RE addition [J]. Corros. Prot., 2006, 27: 487
[3] 周学华, 卫中领, 陈秋荣等. 含稀土耐蚀Mg-9Al铸造镁合金腐蚀行为研究 [J]. 腐蚀与防护, 2006, 27: 487
[4] Wu G H, Fan Y, Gao H T, et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D [J]. Mater. Sci. Eng., 2005, A408: 255
[5] Luo T J, Yang Y S, Li Y J, et al. Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy [J]. Electrochim. Acta, 2009, 54: 6433
[6] Mert F, Blawert C, Kainer K U, et al. Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy [J]. Corros. Sci., 2012, 65: 145
[7] Zhang Q, Li Q A, Wen J B, et al. Effects of Gd on corrosion resistance of magnesium alloy AZ81 [J]. Total Corros. Control, 2007, 21(6): 21
[7] 张清, 李全安, 文九巴等. Gd对镁合金AZ81耐腐蚀性能的影响 [J]. 全面腐蚀控制, 2007, 21(6): 21)
[8] Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
[9] Bai L J, Zhang H, Yuan Y, et al. Influence of β-Mg17Al12 phase content on corrosion behavior of AZ9l magnesium alloy [J]. J. Xi’an Univ. Technol., 2011, 27: 31
[9] 白力静, 张华, 袁颖等. β-Mg17Al12相含量对AZ91镁合金腐蚀行为的影响 [J]. 西安理工大学学报, 2011, 27: 31
[10] Chen Z, Li Q A, Liu W J, et al. Application and development of gadolinium in heat resistant magnesium alloy [J]. Foundry, 2013, 62: 33
[10] 陈志, 李全安, 刘文健等. Gd在耐热镁合金中的应用及研究进展 [J]. 铸造, 2013, 62: 33
[11] Xu Y, Teng Y J, Zhang Y, et al. Investigation of improving corrosion resistance of magnesium alloys by permeating rare earths [J]. Chin. Rare Earths, 2004, 25(5): 13
[11] 许越, 滕玉洁, 张勇等. AZ91镁合金稀土表面改性的研究 [J]. 稀土, 2004, 25(5): 13)
[12] Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
[13] Arrabal R, Pardo A, Merino M C, et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.%NaCl solution [J]. Corros. Sci., 2012, 55: 301
[14] Song G L, Song S Z. Corrosion behaviour of pure magnesium in a simulated body fluid [J]. Acta Phys.-Chim. Sin., 2006, 22: 1222
[14] 宋光铃, 宋诗哲. 镁在人体模拟液中的腐蚀行为 [J]. 物理化学学报, 2006, 22: 1222
[15] He M F, Liu L, Wu Y T, et al. Corrosion properties of surface-modified AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 3267
[16] Baril G, Pébère N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions [J]. Corros. Sci., 2001, 43: 471
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[3] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[4] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[7] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[8] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[9] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[14] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[15] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.