Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 247-263    DOI: 10.11902/1005.4537.2016.035
  本期目录 | 过刊浏览 | 高级检索 |
改性环氧防腐涂层在模拟深海高压环境的失效行为
高洪扬,王巍,许立坤(),马力,叶章基,李相波
中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护国家重点实验室 青岛 266101
Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment
Hongyang GAO,Wei WANG,Likun XU(),Li MA,Zhangji YE,Xiangbo LI
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute,Qingdao 266101, China
下载:  HTML  PDF(3774KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用海水压力罐模拟深海高压环境,利用电化学阻抗谱 (EIS)、三维视频显微镜和扫描电子显微镜 (SEM) 等手段,对比研究了改性环氧防腐涂层在常压海水环境和模拟深海高压环境 (6 MPa海水压力) 下的失效行为。结果表明,试样在深海高压环境下浸泡30 d后,涂层阻抗已降低到105 Ωcm2;而常压环境下,涂层阻抗仅降低到108 Ωcm2,深海高压环境促使涂层更快地吸水达到饱和状态,高压环境导致涂层下的金属腐蚀活性面积不断增大,基体金属腐蚀速率不断增加。SEM观察表明,高压导致环氧防腐涂层中的颜填料发生脱附,使涂层/金属基体界面弱化,腐蚀活性表面积增大,从而导致涂层破损和基体腐蚀。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高洪扬
王巍
许立坤
马力
叶章基
李相波
关键词:  深海高压环境  改性环氧涂层  电化学阻抗谱  涂层失效    
Abstract: 

The degradation behavior of a modified epoxy resin coating was comparatively studied in sea water at atmospheric pressure and in a simulated deep-sea environment with high hydrostatic pressure of 6 MPa by means of electrochemical impedance spectroscopy (EIS), 3D optical microscope and scanning electron microscope (SEM). The results showed that the resistance of the coating decreased to 105 Ωcm2 after 30 d immersion under high hydrostatic pressure, while that decreased to 108 Ωcm2 at atmospheric pressure. The deep-sea environment can induce the enlargement of the active area and shorten the water-saturation process of coatings, therewith, the corrosion rate of the substrate was instantly accelerated. SEM showed that the hydrostatic pressure can deteriorate the attachment of pigments with the epoxy and weaken the adhesion between the epoxy coatings and the metal substrate. In this case, the active area of corrosion was enlarged, whilst the degradation of coatings and the corrosion of the steel substrate simultaneously occurred.

Key words:  deep sea environment with high pressure    modified epoxy coating    electrochemical impedance spectroscopy    coating degradation
收稿日期:  2016-03-19                出版日期:  2017-07-04      发布日期:  2017-07-04      期的出版日期:  2017-07-04
基金资助: 国家自然科学基金 (51401185)
引用本文:    
高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 247-263.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2016.035  或          http://www.jcscp.org/CN/Y2017/V37/I3/247
图1  常压海水环境下浸泡不同时间后改性环氧涂层的EIS谱 (散点为测量数据,实线为拟合结果)
图2  等效电路Rs(CcRc) 示意图
图3  模拟深海高压海水环境下不同浸泡时间后改性环氧涂层的EIS谱 (散点为测量数据,实线为拟合结果)
图4  等效电路Rs(QcRc) 和Rs(Qc(Rc(QdlRct))) 示意图
图5  常压海水环境和高压海水环境下涂层在0.01 Hz时的阻抗随浸泡时间的变化
图6  常压和高压海水环境中改性环氧涂层的电容和电阻随浸泡时间的变化
图7  模拟深海高压海水环境中浸泡9 d后涂层的Qdl和Rct随时间的变化
图8  改性环氧涂层在常压和高压海水环境条件下吸水率随浸泡时间的变化
图9  改性环氧涂层在两种模拟海水环境浸泡前的表面形貌
图10  改性环氧涂层在两种模拟环境中浸泡30 d后的形貌
图11  常压和高压海水环境条件下浸泡实验结束后涂层拉脱处的SEM像
[1] Hou J, Guo W M, Deng C L.Influences of deep sea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
Hou J, Guo W M, Deng C L.Influences of deep sea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
[1] (侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82)
(侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82)
[2] Traverso P, Canepa E.A review of studies on corrosion of metals and alloys in deep-sea environment[J]. Ocean Eng., 2014, 87: 10
[3] Sun H J, Liu L, Li Y, et al.Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel[J]. J. Electrochem. Soc., 2013, 160: C89
[2] Traverso P, Canepa E.A review of studies on corrosion of metals and alloys in deep-sea environment[J]. Ocean Eng., 2014, 87: 10
[3] Sun H J, Liu L, Li Y, et al.Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel[J]. J. Electrochem. Soc., 2013, 160: C89
[4] Raja K S, Jones D A.Effects of dissolved oxygen on passive behavior of stainless alloys[J]. Corros. Sci., 2006, 48: 1623
Raja K S, Jones D A.Effects of dissolved oxygen on passive behavior of stainless alloys[J]. Corros. Sci., 2006, 48: 1623
[5] Zhang T, Yang Y, Shao Y W, et al.A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy[J]. Electrochim. Acta, 2009, 54: 3915
Zhang T, Yang Y, Shao Y W, et al.A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy[J]. Electrochim. Acta, 2009, 54: 3915
[6] Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216
[7] Peng W C, Hou J, Guo W M.Research progress on the corrosion of aluminum alloy in deep ocean[J]. Dev. Appl. Mater., 2010, 25(1): 59
(彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(1): 59)
[6] Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216
[8] Sawant S S, Wagh A B.Corrosion behaviour of metals and alloys in the waters of the Arabian Sea[J]. Corros. Prev. Control, 1990, 36: 154
[7] Peng W C, Hou J, Guo W M.Research progress on the corrosion of aluminum alloy in deep ocean[J]. Dev. Appl. Mater., 2010, 25(1): 59
[9] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al.Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37: 257
[10] Zhang X H, Fang D Q, Gao B, et al.Development of epoxy glass flakes coatings for off-shore steel structures[J]. Dev. Appl. Mater., 2015, 30(1): 15
[7] (彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(1): 59)
[10] (张贤慧, 方大庆, 高波等. 海洋钢结构用环氧玻璃鳞片涂料的开发[J]. 材料开发与应用, 2015, 30(1): 15)
[11] Liu L, Cui Y, Li Y, et al.Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure[J]. Electrochim. Acta, 2012, 62: 42
[8] Sawant S S, Wagh A B.Corrosion behaviour of metals and alloys in the waters of the Arabian Sea[J]. Corros. Prev. Control, 1990, 36: 154
[12] Liu B, Li Y, Lin H C, et al.Progress in study on degradation of anti-corrosion coatings[J]. Corros. Sci. Prot. Technol., 2001, 13: 305
[9] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al.Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37: 257
[12] (刘斌, 李瑛, 林海潮等. 防腐蚀涂层失效行为研究进展[J]. 腐蚀科学与防护技术, 2001, 13: 305)
[10] Zhang X H, Fang D Q, Gao B, et al.Development of epoxy glass flakes coatings for off-shore steel structures[J]. Dev. Appl. Mater., 2015, 30(1): 15
[13] S?rensen P A, Kiil S, Dam-Johansen K, et al.Anticorrosive coatings: A review[J]. J. Coat. Technol. Res., 2009, 6: 135
[10] (张贤慧, 方大庆, 高波等. 海洋钢结构用环氧玻璃鳞片涂料的开发[J]. 材料开发与应用, 2015, 30(1): 15)
[11] Liu L, Cui Y, Li Y, et al.Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure[J]. Electrochim. Acta, 2012, 62: 42
[14] Van Westing E P M, Ferrari G M, Geenen F M, et al. In situ determination of the loss of adhesion of barrier epoxy coatings using electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 1993, 23: 89
[12] Liu B, Li Y, Lin H C, et al.Progress in study on degradation of anti-corrosion coatings[J]. Corros. Sci. Prot. Technol., 2001, 13: 305
[15] Guo W M, Li W J, Chen G Z.Corrosion testing in the deep ocean[J]. Equip. Environ. Eng., 2006, 3(1): 10
(郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验[J]. 装备环境工程, 2006, 3(1): 10)
[12] (刘斌, 李瑛, 林海潮等. 防腐蚀涂层失效行为研究进展[J]. 腐蚀科学与防护技术, 2001, 13: 305)
[16] See S C, Zhang Z Y, Richardson M O W. A study of water absorption characteristics of a novel nano-gelcoat for marine application[J]. Prog. Org. Coat., 2009, 65: 169
[13] S?rensen P A, Kiil S, Dam-Johansen K, et al.Anticorrosive coatings: A review[J]. J. Coat. Technol. Res., 2009, 6: 135
[17] Czarnecki L, Garbacz A, Krystosiak M.On the ultrasonic assessment of adhesion between polymer coating and concrete substrate[J]. Cem. Concr. Compos., 2006, 28: 360
[14] Van Westing E P M, Ferrari G M, Geenen F M, et al. In situ determination of the loss of adhesion of barrier epoxy coatings using electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 1993, 23: 89
[18] Zhang J Q, Cao C N.Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corros. Prot., 1998, 19: 99
[15] Guo W M, Li W J, Chen G Z.Corrosion testing in the deep ocean[J]. Equip. Environ. Eng., 2006, 3(1): 10
[18] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19: 99)
[15] (郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验[J]. 装备环境工程, 2006, 3(1): 10)
[16] See S C, Zhang Z Y, Richardson M O W. A study of water absorption characteristics of a novel nano-gelcoat for marine application[J]. Prog. Org. Coat., 2009, 65: 169
[17] Czarnecki L, Garbacz A, Krystosiak M.On the ultrasonic assessment of adhesion between polymer coating and concrete substrate[J]. Cem. Concr. Compos., 2006, 28: 360
[18] Zhang J Q, Cao C N.Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corros. Prot., 1998, 19: 99
(张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19: 99)
[1] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[2] 徐致孝,周和荣,姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[3] 董赋,胡裕龙,赵欣,王智峤. 静水压力对10CrNi3MoV钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[4] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[5] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[6] 隋佳利,李相波,林志峰,詹天荣. 两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 471-475.
[7] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[8] 王思齐,祝郦伟,刘福春,韩恩厚,王震宇,钱洲亥. 磷酸对氯乙烯-丙烯酸共聚物带锈涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.
[9] 陈文,管春平,杨申明,胡小安. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 177-184.
[10] 蒋穹, 缪强, 梁文萍, 刘志梅, 王珂, 姚正军, 魏小昕. 碳钢表面Al-Zn-Si-RE多元合金涂层在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 429-437.
[11] 张建春, 麻晗, 左龙飞, 李阳. 耐蚀钢筋20MnSiCrV在氯盐环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 461-466.
[12] 吕晨曦, 魏英华, 李京, 孙超. 聚合物改性砂浆中钢筋的电化学行为及聚合物改性混凝土抗Cl-渗透性[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
[13] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[14] 赵阳, 梁平, 史艳华, 张云霞. 环境因素对X100钢表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[15] 王雪莹, 王佳, 刘在健, 丁健, 王海杰. 金属罐内涂层破损区气相定位检测局部电化学探头技术的研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 169-176.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed