Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 544-549    DOI: 10.11902/1005.4537.2013.221
  本期目录 | 过刊浏览 |
B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能
常钦鹏1, 陈友媛1,2(), 宋芳1, 彭涛3
1. 中国海洋大学环境科学与工程学院 青岛 266100
2. 中国海洋大学 海洋环境与生态教育部重点实验室 青岛 266100
3. 建设综合勘察研究设计院有限公司 北京 100007
Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System
CHANG Qinpeng1, CHEN Youyuan1,2(), SONG Fang1, PENG Tao3
1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
2. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
3. China Institute of Geotechnical Investigation and Surveying Co. Ltd, Beijing 100007, China
全文: PDF(999 KB)   HTML
摘要: 

采用动电位极化扫描、电化学阻抗谱等方法研究在地下咸水不同电导率、pH值和流速条件下,B30铜镍合金和316L不锈钢的腐蚀行为。结果表明:随着地下咸水电导率的增加,B30铜镍合金自腐蚀电流密度迅速增加,点蚀敏感性增大,而316L不锈钢自腐蚀电流密度的增加较缓慢,耐蚀性明显优于B30铜镍合金。在酸性溶液中,B30铜镍合金发生均匀腐蚀。随着pH值的增大,B30铜镍合金点蚀倾向增大,316L不锈钢点蚀倾向减小。流速为1 m/s的冲刷腐蚀条件可以破坏B30铜镍合金钝化膜的形成,而不影响316L不锈钢钝化膜的稳定性。这为热泵系统如何选择金属材料提供了参考。

关键词 B30铜镍合金316L不锈钢电导率pH值腐蚀    
Abstract

The electrochemical corrosion behavior of 316L stainless steel and B30 Cu-Ni alloy in saline groundwater with variation of electric conductivity, pH value and flow velocity was investigated by potentiodynamic polarization curves and EIS. The results showed that the corrosion current density and pitting sensitivity of B30 Cu-Ni alloy increased rapidly with the increase of the conductivity, while that of 316L stainless steel increased slowly. The corrosion resistance of 316L stainless steel was better than that of B30 Cu-Ni alloy. In acidic solution, B30 Cu-Ni alloy exhibited characteristic of uniform corrosion without appearance of pitting corrosion. With the increasing of pH value, pitting corrosion of B30 Cu-Ni alloy was promoted while that of 316L stainless steel was inhibited. As the flow velocity increased up to 1 m/s, the stability of the passive film of B30 Cu-Ni alloy was damaged, while that of 316L stainless steel was not affected. These results provide a reference to the choice of the metal materials for heat pump system.

Key wordsB30 Cu-Ni alloy    316L stainless steel    conductivity    pH value    corrosion
    
ZTFLH:  TG172.5  
基金资助:国家科技支撑计划项目 (2013BAJ09B04) 资助
作者简介: null

常钦鹏,男,1990年生,硕士生,研究方向为水资源利用与水污染控制

引用本文:

常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
Qinpeng CHANG, Youyuan CHEN, Fang SONG, Tao PENG. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 544-549.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.221      或      https://www.jcscp.org/CN/Y2014/V34/I6/544

Alloy Ni Mn C P Pb Si Zn S Sn Cr Mo Co N2 Fe Cu
B30 Cu-Ni 31.08 1.00 0.016 0.006 0.01 0.044 0.026 0.006 0.005 --- --- --- --- 0.765 Bal.
316L stainless steel 10.14 1.71 0.02 0.03 --- --- --- --- --- 16.31 2.10 0.12 0.04 Bal. 0.24
表1  B30铜镍合金和316L不锈钢的化学成分
图1  B30铜镍合金和316L不锈钢在不同电导率地下咸水中的极化曲线
Conductivity / mScm-1 Alloy Ecorr / mV Icorr / 10-7 Acm-2 R2 / MΩcm2
30 B30 Cu-Ni alloy -231.9 10.60 0.024
316L stainless steel -120.7 1.25 1.320
40 B30 Cu-Ni alloy -350.4 52.30 0.013
316L stainless steel -132.7 1.30 0.580
50 B30 Cu-Ni alloy -329.3 93.70 0.009
316L stainless steel -166.3 1.72 0.590
60 B30 Cu-Ni alloy -345.4 120.40 0.008
316L stainless steel -169.5 1.77 0.550
70 B30 Cu-Ni alloy -398.5 181.10 0.007
316L stainless steel -181.3 2.34 0.470
表2  B30铜镍合金和316L不锈钢在不同电导率地下咸水中的阻抗谱拟合参数
图2  B30铜镍合金和316L不锈钢在不同电导率地下咸水中的阻抗图
图3  B30铜镍合金和316L不锈钢的拟合等效电路
图4  B30铜镍合金和316L不锈钢在不同pH值地下咸水中的极化曲线
pH value Alloy Ecorr / mV Icorr / 10-7Acm-2 Eb / mV
5 B30 Cu-Ni alloy -396.9 30.70 ---
316L stainless steel -219.2 2.31 653.9
6 B30 Cu-Ni alloy -386.9 32.70 ---
316L stainless steel -194.8 2.05 686.7
7 B30 Cu-Ni alloy -339.0 29.30 ---
316L stainless steel -174.7 1.55 768.5
8 B30 Cu-Ni alloy -321.2 24.60 ---
316L stainless steel -148.5 1.09 781.6
9 B30 Cu-Ni alloy -315.2 31.30 ---
316L stainless steel -139.4 0.98 846.9
10 B30 Cu-Ni alloy -292.4 41.00 ---
316L stainless steel -127.8 0.81 870.6
表3  B30铜镍合金和316L不锈钢在不同pH值地下咸水中的极化曲线拟合参数
图5  B30铜镍合金和316L不锈钢在静态和1 m/s流动冲刷条件下的极化曲线
[1] Wu K H, Li W P, Liu H C, et al. Scaling and electrochemical corrosion behavior of 304 stainless steel pipes in a simulated geothermal water environment[J]. J. Univ. Sci. Technol. Beijing, 2011, 33(5): 1263-1269
[1] (吴坤湖, 李卫平, 刘慧丛等. 模拟地热水环境中304不锈钢管材的结垢与腐蚀电化学行为[J]. 北京科技大学学报, 2011, 33(5):1263-1269)
[2] Luo Y Z. Highly alloyed stainless and metal alloys for seawater application[J]. Ship Sci. Technol., 2002, 24(6): 64-66
[2] (罗永赞. 海洋用高级不锈钢和金属合金[J]. 舰船科学技术, 2002, 24(6): 64-66)
[3] Wang X Y, Wu Y S, Zhang L, et al. Corrosion behavior in 3.5% NaCl solution of 316L SS passivated in oxidizing acid liquor[J]. Corros. Sci. Prot. Technol., 2000, 12(6): 311-314
[3] (汪轩义, 吴荫顺, 张琳等. 316L不锈钢钝化膜在Cl-介质中的耐蚀机制[J]. 腐蚀科学与防护技术, 2000, 12(6): 311-314)
[4] Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater[J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53
[4] (刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53)
[5] Fang X X, Zhen R, Xue Y J, et al. Erosion-corrosion synergism of 65Mn and stainless steel 316L in single liquid phase and liquid/solid two-phase flow[J]. Chin. J. Mater. Res., 2011, 25(2): 172-178
[5] (方信贤, 甄睿, 薛亚军等. 两种不锈钢在单相流和液/固两相流中冲刷与腐蚀的交互作用[J]. 材料研究学报, 2011, 25(2): 172-178)
[6] Zhao C M, Jia M Q, Hou J H. The effect of Cl- on corrosion behavior of copper in bitter and brackish solution[J]. J. Beijing Univ. Chem. Technol., 2000, 2(2): 62-65
[6] (赵春梅, 贾梦秋, 霍金花. 咸水中氯离子对铜腐蚀行为的影响[J]. 北京化工大学学报, 2000, 2(2): 62-65)
[7] Zhu L Q, Wu K H, Li W P, et al. Scaling and corrosion of 304 stainless and galvanized steel pipes in a simulated geothermal water environment[J]. Acta Phys.-Chim. Sin., 2010, 26(1): 39-45
[7] (朱立群, 吴坤湖, 李卫平等. 模拟地热水中304不锈钢管和镀锌钢管的腐蚀与结垢[J]. 物理化学学报, 2010, 26(1): 39-45)
[8] Zhu X L, Lei T Q. Characteristics and formation of corrosion product films of 70Cu-30Ni alloy in seawater[J]. Corros. Sci., 2002, 44(1): 67-79
[9] Sudesh T L, Wijesinghe L, Blackwood D J. Characterization of passive films on 300 series stainless steels[J]. Appl. Surf. Sci., 2006, 253(2): 1006-1009
[10] Chi C Y, Xu L K, Lin C G, et al. Influence of pH on electrochemical behavior of 70/30 Cu-Ni alloy[J]. Equip. Env. Eng., 2009, 6(3): 38-41
[10] (迟长云, 许立坤, 蔺存国等. pH值变化对B30铜镍合金腐蚀电化学行为的影响[J]. 装备环境工程, 2009, 6(3): 38-41)
[11] Chen H Y, Zhu Y L, Shu C. Research on the selective corrosion of BFe30-1-1 alloy in NaCl solution[J]. Surf. Technol., 2005, 34(6) : 14-16
[11] (陈海燕, 朱有兰, 舒畅. 铜镍合金BFe30-1-1在NaCl溶液中的腐蚀行为[J]. 表面技术, 2005, 34(6): 14-16)
[12] Khalid S E, Hodgkiess T. Comparative studies of the seawater corrosion behavior of a range of materials[J]. Desalination, 2003, 158(1): 35-42
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[7] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[8] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[9] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[11] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.