中国腐蚀与防护学报, 2023, 43(6): 1216-1224 DOI: 10.11902/1005.4537.2022.338

综合评述

铅基堆结构材料液态金属腐蚀行为的研究进展

张心怡, 李聪,, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷

华北电力大学核科学与工程学院 北京 102206

Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor

ZHANG Xinyi, LI Cong,, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei

School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China

通讯作者: 李聪,E-mail:clever@ncepu.edu.cn,研究方向为液态铅铋回路氧控工艺及腐蚀防护

收稿日期: 2022-10-30   修回日期: 2022-11-08  

基金资助: 国家自然科学基金.  12027813
国家重点研发计划.  2022YFB1902503
中央高校基本科研业务费专项资金.  2022MS035

Corresponding authors: LI Cong, E-mail:clever@ncepu.edu.cn

Received: 2022-10-30   Revised: 2022-11-08  

Fund supported: National Natural Science Foundation of China.  12027813
National Key R&D Program of China.  2022YFB1902503
Fundamental Research Funds for the Central Universities.  2022MS035

作者简介 About authors

张心怡,女,1998年生,硕士生

摘要

铅基快堆作为第四代核能系统堆型之一,成为国内外近年来研究热点。作为铅基堆冷却剂的液态铅/铅铋,具备中子物理特性优良、安全特性高等优点,但其与结构钢的不相容性导致了液态金属腐蚀、脆化等一系列失效机制。结构钢在液态铅/铅铋中的腐蚀表现除了与液态金属的温度、流速、溶解氧浓度等环境参数密切相关外,也伴随着冲蚀力学失效和辐照损伤等因素导致的冲蚀-腐蚀、辐照-腐蚀耦合效应。本文从液态金属微观腐蚀机理、新型耐蚀合金成分设计和表面改性工艺的研发、冲蚀-腐蚀动态腐蚀装置的设计及液态铅/铅铋回路长期腐蚀预测模型、辐照-腐蚀协同效应相关实验平台的搭建等4个方面综述了国内外近年来在铅基堆结构材料腐蚀领域取得的理论和实验研究进展。

关键词: 铅冷快堆 ; 液态金属腐蚀 ; 冲蚀 ; 辐照-腐蚀耦合

Abstract

As a candidate of Generation IV fast reactors, Lead Fast Reactors (LFRs) have attracted global research interests for past decades. Liquid lead and lead-bismuth eutectic (LBE) are both proposed as the coolants for LFRs due to their favorable transmutation and breeding capability. However, the direct exposure to heavy liquid metals can lead to premature failures of the structural steels, such as liquid metal corrosion and liquid metal embrittlement. It has been widely proven that the corrosion performance of structural steels all depends on various environment parameters such as ambient temperature, the dissolved oxygen concentration in liquid metals, liquid flow pattern, and the co-existing irradiation. For the latter cases, liquid metal corrosion can therefore be generalized to erosion-assisted mechanical failure and irradiation damage. Here we reviewed the research progress on liquid metal corrosion issues theoretically and experimentally for LFRs. The progress can be categorized into following aspects: (1) microscopic liquid metal corrosion mechanism revealed by advanced material characterization methods as well as density functional theory, (2) development of anti-corrosion materials and surface modification techniques, (3) design of dynamic corrosion apparatus to investigate erosion-corrosion synergy in flowing liquid metals and long-term corrosion prediction modelling concerning primarily with liquid Pb/LBE loops, (4) introduction of various in-situ irradiation sources (i.e. neutrons, heavy ions and protons) to the liquid Pb/LBE corrosion apparatus to investigate the irradiation-corrosion synergistic effects.

Keywords: lead-cooled fast reactors ; liquid metal corrosion ; erosion-corrosion synergy ; irradiation-corrosion synergy

PDF (5407KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展. 中国腐蚀与防护学报[J], 2023, 43(6): 1216-1224 DOI:10.11902/1005.4537.2022.338

ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(6): 1216-1224 DOI:10.11902/1005.4537.2022.338

积极、有序、安全发展核电已经成为落实“碳达峰、碳中和”目标的关键一环。目前,第四代堆核反应堆相关研发正成为各核能利用大国关注的热点,我国也是较早重启核电的国家,亟需布局和储备下一代核能技术。作为第四代核反应堆堆型之一,铅基堆以其良好的非能动安全性和经济性被认为最有望率先实现工业化示范和商业化应用[1]。本世纪初,第四代核能系统国际论坛铅冷快堆临时系统指导委员会给出了欧洲ELFR (European Lead-cooled Fast Reactor),俄罗斯BREST-OD-300,以及美国阿贡国家实验室SSTAR (the Small Secure Transportable Autonomous Reactor) 3种示范堆型[2]。作为3种主要的铅基堆候选结构材料,T91铁素体/马氏体钢、15-15Ti奥氏体钢和316L奥氏体钢与铅基堆冷却剂液态铅/铅铋 (LBE) 相容性问题是制约铅冷快堆大规模部署的主要难题[3,4]。现行铅冷快堆的常规运行温度区间为380~550 ℃,结合Ellingham图[5]和以往大量腐蚀实验结果可知,当液态铅铋中的溶解氧含量大于10-8% (质量分数,下同) 时,在300~470 ℃区间内,氧化腐蚀程度是可控的,奥氏体钢和铁素体/马氏体钢表面形成稳定生长的氧化膜,且具有一定保护性。在470~550 ℃区间则对应了溶解-氧化平衡关系被打破的过渡阶段。在高于550 ℃的液态铅铋中,奥氏体钢出现较为严重的溶解腐蚀,铁素体/马氏体钢表面则因为氧化层生长过快导致过厚的氧化膜脱落[6]。此外,Furukawa等[7]还报道了在高于550 ℃液态铅铋中,铁的氧化物由磁铁矿型向方铁矿型转变,后者也被普遍认为不具备保护性。因此,在更高运行温度区间,需要进一步改进结构钢的成分设计或者基于传统结构钢开发表面防腐工艺。

可以说,铅基堆一系列技术瓶颈的突破,离不开材料成分设计、腐蚀环境参数的控制,以及材料表面防护工艺等相关研究[8]。本文将基于不同腐蚀环境条件参数下的不同腐蚀机制研究方法、耐蚀合金成分设计及表面改性工艺研发等多个维度,总结近年来国内外铅基堆结构材料液态金属腐蚀行为相关研究热点和发展趋势。

1 微观尺度液态金属腐蚀机理的理论模拟和实验研究

目前铅铋腐蚀微观尺度计算模拟研究主要针对贫氧环境下的溶解腐蚀。如Xu等[9]通过第一性原理模拟了Pb原子在Fe的3类低指数晶面——(001)、(110)和(111)晶面的吸附和逃逸行为,研究结果表明,Pb原子加速了纯铁表面Fe原子的逃逸。纯Fe的上述3种晶面在液铅中的溶解腐蚀倾向,按(110)、(001)和(111)晶面顺序依次递增。在液态铅铋合金中,相比Pb原子,Bi原子更容易吸附于Fe的表面,向纯Fe中添加Si、V、Nb、Mo等合金元素可以有效缓解溶解腐蚀程度,而Al、Cr、Mn、Ni和Cu等合金元素的添加则会加重溶解腐蚀程度。Zhou等[10]通过分子动力学模拟α-Fe(100)晶面与液态铅铋的相互作用,也得出了相同的结论。上述两家研究单位合作,结合第一性原理理论计算和腐蚀实验研究了液态铅铋中4H-SiC(0001)特定晶面的溶解腐蚀行为。基体表面的未配对电子发生了如图1a所示的表面原子位移和轨道杂化,导致表面C和Si原子之间化学键强度降低,进一步形成带电空位。带正电荷的空位由于正负电荷的中和作用促进了Pb/Bi原子的腐蚀,而带负电荷的空位则阻止了Pb/Bi原子对空位的占领。同时,比Si原子迁移率高的C原子容易向基体表面移动,并进一步溶解到LBE中,形成如图1b所示的Si非晶层,因此通过调整空位电荷和改变费米能级相对位置可以有效提高4H-SiC的耐蚀性[11]

图1

图1   4H-SiC与液态Pb/Bi接触的溶解腐蚀示意图[11]

Fig.1   Schematic illustrations of dissolution corrosion of 4H-SiC in touch with liquid Pb/Bi[11]: (a) clean surface atomic displacement and dissolution of C atoms and vacancies formed, (b) Si amorphization layer, (c) effect of charged vacancy on liquid Pb/Bi corrosion resistance


除了原子尺度的计算模拟,先进材料分析测试技术也被广泛用于微观尺度铅铋腐蚀机理的研究,尤其是复杂的多组元合金氧化机理表征。Ye等[12]在国内首次采用聚焦离子束工艺制备透射样品深入研究了9Cr钢的内氧化行为,观察到了内氧化区纳米尺度富Cr氧化物颗粒通过调幅分解机制优先形核。Popovic等[13]首次采用同步X射线劳厄微衍射用于表征FeCrAl合金在800 ℃静态铅铋合金中内氧化行为。根据基体中不连续的内氧化相分布情况,沿合金基体深度方向选取了如图2所示的3个典型劳厄衍射峰进行分析,观察到基体中存在不连续的内氧化相,且沿x轴方向存在多个滑移系统,基体边界处的应力增加方向与第二个滑移系统起始方向一致,内氧化边界处出现了结晶度良好、旋转度小的亚晶粒,证实Al的内氧化是引起FeCrAl合金基体应变的主要原因,而非传统观点认为的合金基体与外氧化层的热膨胀系数失配。

图2

图2   800 ℃铅铋腐蚀后FeCrAl合金样品截面同步X射线劳厄衍射平均峰宽分布图及对应于图2a中不同深度各点的局部劳厄衍射峰[13]

Fig.2   Distribution of average peak width given by synchronous X-ray Laue diffraction on the cross section of FeCrAl alloy after liquid LBE corrosion at 800 ℃ (a) and local Laue diffraction peaks at different depths corresponding to the points marked in Fig.2a (b-d)[13]


2 新材料、新工艺的应用

2.1 耐蚀合金的成分设计

为了改善T91钢和316L、15-15Ti奥氏体钢等铅基堆候选材料在更高温度、更宽泛的氧浓度控制区间耐蚀性不足的问题,近年来国内外研究者借助机械合金化、增材制造等工艺制备的含Al、Si、Y等其中一种或若干种元素的合金钢极大改善了液态金属中耐蚀性[14~19]。其中,代表性的研究工作包括中科院金属研究所采用真空感应、真空自耗等冶炼技术制备的含Si铁素体/马氏体钢 (SIMP钢) [16],以及中科院核安全所研发的含Si氧化物弥散强化钢 (ODS钢)[17]。后者制备过程中Si可以与Y2O3反应生成密度高达~1024 m-3弥散分布的Y2Si2O7和Y2SiO5纳米颗粒,在含氧液态铅铋中,这些富Si纳米相优先被氧化成富Si的内氧化层,进而有效阻碍铅铋中溶解氧向基体扩散及基体元素向铅铋的溶解反应。表1汇总了近几年高熵、非晶合金或涂层在液态铅或铅铋中腐蚀行为的相关研究报道[20~27]。需要指出的是,Al、Si等元素的添加会恶化材料力学性能[28,29],Al过量添加 (>20%) 还会加剧材料溶解腐蚀倾向[30],因此这类合金元素含量须严格控制。

表1   高熵、非晶合金或涂层在液态铅或铅铋中的腐蚀研究汇总[20~27]

Table 1  Summary of investigations on corrosion of high entropy alloys and amorphous materials (either bulk alloys or coatings) in liquid lead or LBE[20-27]

Corrosion environment parameterAlloy bulk or coating componentOxide thicknessOxide phase

Static liquid Pb, 10-6% oxygen concentration,

600 °C, 2000 h[20-22]

Al9.8Cr30.3Fe33.0Ni26.90.13-0.4 μm(Fe, Cr)3O4&Cr2O3outside+Al2O3 inside
Al11.7Cr22.4Fe33.3Ni32.60.1 μmMixed oxide layer of Cr2O3-Al2O3 with γ-Al2O3 branches
Al9.8Cr22.5Fe33.2Ni34.50.12 μmCr2O3&Al2O3
Al6.0Cr25.0Fe34.0Ni35.00.14 μmCr2O3&Al2O3
Al8.0Cr23.2Fe34.0Ni34.8UnknownDiscontinuous oxide layer
Al8.0Cr23.0Ni35.0Fe34.0400 nmCr2O3&(Al, Cr)2O3 (1000 h)
Al8.0Cr22.0Fe32.0Ni33.0Cu5.00.3-0.5 μmFe(Cr, Al)2O4 outside+Al2O3inside (1000 h); exfoliated oxide layer (2000 h)
Al7.9Cr22.0Fe31.9Ni33.2Ti5.03.0-6.0 μmCr2O3&PbTiO3 outside+Al2O3 inside
Al8.2Cr21.4Fe30.3Ni35.0Nb5.10.4 μmPbNbO outside+Al2O3 inside
Static LBE, saturated oxygen, 550 ℃, 600 °C, 500 h[23]AlTiN amorphous coatings2-4 μm

(Fe(Fe x Cr1-x )2O4) (550 ℃);

TiO2&γ- Al2O3 (600 ℃)

Static LBE,

saturated oxygen,

550 ℃, 500 h[24]

Ti100-x Si x N amorphous coatings

(X=10, 15, 20)

UnknownTiO x

Static LBE,

saturated oxygen,

400 ℃, 500 h[25]

Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2

amorphous coatings

UnknownFe3O4 outside+Cr2O3&PbO inside

Static LBE,

saturated oxygen, 550 ℃,650 ℃, 1000 h[26]

AlCrFeMoTi high entropy alloy coatings

(Al=21.1%, Cr=20.1%, Fe=16.4%, Mo=18.8%, Ti=20.4%, atomic fraction)

0.5 μm (550 ℃)

1 μm (650 ℃)

Cr2O3,TiO2&(Fe, Cr)3O4

Static LBE,

saturated oxygen,

500 ℃, 1000 h[27]

Fe47-x Cr20Mo10W x C15B6Y2(x=0, 2%, 4%, 6%, atomic fraction) amorphous alloys2.2-2.7 μmFeCr2O4 outside+amorphous layer inside

新窗口打开| 下载CSV


此外,W、Mo等难熔合金也被尝试用于高温 (550 ℃以上) 铅/铅铋中的腐蚀实验。Rivai和Takahashi[31]研究了W和Mo在700 ℃较低溶解氧浓度 (5×10-6%) 铅铋中的腐蚀行为,在浸泡1000 h后的W和Mo表面借助扫描电子显微镜并未观察到明显的氧化层,此外也没有观察到铅铋对难熔合金基体的溶解腐蚀迹象,这表明上述两种难熔合金在该腐蚀环境参数下具有优异的耐蚀性。Xiao等[32]在更高温度(1000 ℃)、更低溶解氧浓度 (1×10-10%) 的液态铅中开展了1000 h的Nb521和Mo-0.5 La合金腐蚀实验,结果显示两种合金均发生了不同程度的溶解腐蚀。其中,Nb521合金试样的质量损失高达135 g/m2,铅沿Nb521合金基体的晶界向内渗透,深度达5~15 μm,同时在样品表面出现了W、Mo的偏析,而Mo-0.5 La合金试样质量损失仅为7 g/m2,腐蚀后的样品表面出现了类似金相侵蚀的形貌,根据优先被侵蚀的晶界可以判断出晶粒尺寸大概为1~5 μm,部分腐蚀层不连续且有脱落趋势,但并未观察到铅对合金基体的渗透。Cairang等[33]则在600 ℃氧饱和态 (2×10-3%) 液态铅铋中开展了20~100 h的Mo腐蚀实验,结合扫描电镜、透射电镜以及Raman光谱等表征手段,证实了Mo表面生成了复杂的多层氧化层,最外层为10 μm厚的Pb2MoO5和柱状晶结构的PbMoO4、中间层为400 nm厚的PbMoO4超细晶组织,最内层为MoO2纳米晶。可见,难熔合金在高温液态铅/铅铋中的腐蚀表现除了和合金成分设计因素有关,还极大依赖于液态金属中溶解氧浓度的控制。

2.2 表面改性工艺的研究进展

除了表1中列举的高熵合金和非晶合金防护涂层外,先进表面改性工艺也被广泛用于液态金属腐蚀防护。德国卡尔斯鲁厄理工学院通过低压等离子喷涂+强流脉冲电子束表面重熔 (GESA) 工艺制备了FeCrAlY防护涂层。其中,GESA工艺中脉冲电子束加速电压高达120 keV,单次脉冲持续时间可达40~45 μs,对试样表面的重熔处理深度可达50 μm,不仅极大降低了低压等离子喷涂涂层高孔隙率,还实现了涂层与基体的冶金结合。在480、550和600 ℃的氧浓度10-6%流动LBE中对带FeCrAlY涂层的T91钢样品进行了超过11000 h的腐蚀测试,结果表明样品表面仅形成了厚度小于1 μm的Al2O3层。此外,FeCrAlY涂层在400 ℃、2.5 dpa质子辐照环境下的流动液态铅铋中腐蚀900 h后仍与T91钢基体结合良好,保持了良好的机械稳定性和延展性[18, 19]。研究人员[34, 35]采用表面机械轧制处理 (SMRT) 工艺,在9Cr2WVTa合金和11Cr-WVTaSi合金引入纳米晶组织,获得了优异的抗液态金属腐蚀性能。在550 ℃的静态氧饱和LBE中腐蚀实验前期阶段,SMRT处理后的两种合金表面均形成了富集Mn、Si的Fe-Cr尖晶石薄膜,比未经SMRT处理的原始合金试样表面较厚的Fe3O4+Fe-Cr尖晶石双氧化层更具保护性。但随着腐蚀时间的延长,3000 h后SMRT处理后的9Cr2WVTa合金的氧化层厚度与原9Cr2WVTa合金相当,而SMRT处理后的11Cr-WVTaSi合金在3500 h后氧化层厚度仍小于1 μm,远低于未经SMRT处理的11Cr-WVTaSi合金的氧化层厚度 (~25 μm)。由此推测,合金中Cr的含量可能会影响SMRT工艺对耐蚀性的改善。

3 流动铅/铅铋腐蚀的实验研究与理论建模

3.1/铅铋动态腐蚀实验研究进展

铅基堆内的液态铅铋通常处于流动状态,这也让结构钢面临一系列挑战。除了静态铅铋中结构钢的溶解/氧化腐蚀,流动的液态铅铋还会引入材料冲蚀破坏。随着实验温度的升高、铅铋流速增加,以及液态金属相对腐蚀样品表面攻角的改变[36],冲蚀对结构钢基体的破坏程度远大于相同腐蚀环境参数下静态铅铋所造成的结构钢氧化或溶解腐蚀。

表2汇总了国内外铅铋动态腐蚀实验平台搭建及腐蚀实验开展情况[8, 37~47]。可以看出,铅/铅铋回路是国外开展动态腐蚀研究的主流实验装置,德国卡尔斯鲁厄理工学院、比利时核能研究中心配合精确的氧控系统,实现了接近或超过20000 h的铅铋回路稳定运行记录。国内科研机构如中科院安徽光机所基于德国卡尔斯鲁厄理工学院CORELLA双罐式铅铋动态腐蚀装置做了改进设计,证实了即便在低铅铋流速下,偏离0°攻角的流体加速了T91铁素体/马氏体钢表面氧化层的失效 (分层、剥落或裂纹)[36]。此外,T91钢基体在90°攻角液态铅铋冲蚀1000 h后形成类似磨蚀过程中动态回复产生的纳米尺寸等轴晶+片层晶 (分别对应于图3c中Band 1和Band 2) 梯度塑性变形组织。这种高几何必需位错密度的梯度变形组织显著影响液态铅铋侵蚀路径,如图3所示,铅铋倾向于在等轴晶和片层组织界面处发生转向,且随着铅铋向合金内部不断渗透,其溶解氧含量也随着内氧化反应对溶解氧的消耗而下降,逐渐偏离初始氧饱和状态,导致铅铋侵蚀路径尖端结构钢的溶解腐蚀。

表2   国内外部分铅/铅铋动态腐蚀实验相关参数[36-48]

Table 2  Related parameters of liquid lead/LBE dynamic corrosion experiments[36-48]

InstitutionCorrosion setupOperating temperatureDuration of corrosion testOxygen concentrationFluid rate of liquid metals
Japan Atomic Energy Research InstituteJAERI LBE loop [37, 38]450±50 ℃3000 hTheoretical solution limit of 3.2×10-4 %; experimentally measured value of 1.0×10-3 %1 m/s
350-450 ℃3600 h10-8%-10-9%0.7 m/s
The University of New Mexico & Los Alamos National LaboratoryLOBO lead loop [39]500-700 ℃UndefinedUndefined≤3 m/s
Karlsruher Institut für TechnologieCORRIDA LBE loop[40-42]400 ℃13000 h10-7%2 m/s
550±5 ℃20039 h1.4×10-6%-1.6×10-6%2.0±0.2 m/s
CORELLA dual tank [43]≤650 ℃Undefined10-10%-10-4%≤4.5 m/s
SCK-CENCRAFT LBE Loop [44]401 ℃19732 h1.0×10-7%-2.0×10-7%2 m/s
UJV-REZLBE Loop [45]400-500 ℃1000 h0.3×10-5%-2.0×10-5%0.01-0.02 m/s
Jiangsu UniversitySingle tank type device [8, 46]550 ℃1500 hOxygen-saturated1.70-2.98  m/s
Anhui Institute of Optics and Fine MechanicsDual tank type device [36, 47]400 ℃1000 hOxygen-saturated1-5 m/s

新窗口打开| 下载CSV


图3

图3   流速5 m/s的铅铋垂直冲刷1000 h后T91钢截面铅铋侵蚀形貌,Kernel局部平均取向差及反极图+花样质量叠加图[36]

Fig.3   BSE image of a typical LBE penetration path on the cross section of T91 after exposure to perpendicular LBE flow at a fluid rate of 5 m/s for 1000 h (a), Kernel average misorientation map (b) and inverse pole figure+image quality map corresponding to the area bordered with yellow line in Fig.3a (c)[36]


3.2/铅铋动态腐蚀理论建模

关于流动铅铋腐蚀的研究,目前国外更多是从反应动力学角度,通过不同腐蚀环境参数下的传质模型建立腐蚀长期预测模型。Balbaud-Célérier等[48, 49]在400/470 ℃条件下对T91马氏体钢进行低氧浓度下的流动铅铋腐蚀测试,在氧浓度低于临界值 (10-8%,500 ℃) 时,对于管外流动和管内流动,分别采用Eisenberg方程和Berger & Hau方程计算传质系数,并采用CICLAD腐蚀实验平台验证基于传质控制过程推导的腐蚀速率表达式。Zhang和Li[50]对中高氧浓度铅铋回路中,Fe和316L钢表面氧化层的厚度变化进行研究,在假定氧化层表面氧浓度恒定的情况下,氧化层的减薄过程由腐蚀产物的传质过程控制,利用Silverman传质系数表达式可推导出稳态氧化层的减薄速率正比于铅铋流速的-0.875次方。Steiner等[51, 52]研究了极端流态下氧化层生长理论模型,在不考虑边界层的湍流条件下,用平均流速近似冷却剂在管道横截面的流速分布,推导出LBE中溶质浓度平均值的简单微分方程。引入液态金属中氧化物颗粒溶解的影响,同时用Tedmon方程的增量式处理氧化层脱落,建立流动液态金属作用下的氧化层生长模型。该模型指出,在氧化初始阶段,致密的Fe-Cr尖晶石单氧化层生长缓慢,在强制对流下,氧化层厚度演变由LBE的氧化机制和溶解/沉淀机制共同主导。在此基础上,H. Steiner分别用最小二乘法拟合Tedmon方程和基体减薄量估算铁素体/马氏体钢在流动LBE中的溶解速率。腐蚀实验验证结果表明:相比Tedmon方程,采用基体减薄量估计法长期腐蚀预测精度更高,随着LBE中的氧含量降低,氧化层的溶解速率显著升高,且磁铁矿型氧化物的溶解程度比Fe/Cr尖晶石氧化物要高得多。

4 辐照环境下液态铅/铅铋腐蚀实验装置的设计

随着国内外铅冷堆项目进度加快,国内外核能研究机构近年来开始搭建更为复杂的LBE腐蚀实验平台以还原铅基堆内结构钢的真实服役条件。为了研究辐照-腐蚀协同效应,Stergar等[53]搭建快中子辐照+LBE腐蚀同步实验装置如图4所示,该装置将测试样品封装在填充了LBE的腔室中,并将腔室置于中子辐照室进行为期6个月腐蚀测试,以研究T91钢和316L钢在6.1 dpa中子辐照下的LBE腐蚀综合效应。与LBE中未受辐照的腐蚀试样相比,LBE辐照腐蚀后的T91钢强度明显提高,塑性显著降低,出现了更为严重的液态金属脆化,而316L钢虽然也发生了明显的辐照硬化,但塑性仍然保持良好,未见明显的液态金属脆化现象[53, 54]

图4

图4   LBE样品辐照装置,测试组件及辐照装置实体图[53]

Fig.4   Irradiation rig, designed for the irradiation of the steel specimens in LBE (a), detailed view on the test assembly (b) and photograph of the actual irradiation rig (c)[53]


美国Los Alamos国家实验室采用质子激发X荧光光谱分析技术,首次实现了连续原位监控纯铁在450 ℃ LBE中的质子辐照 (4 MeV) +腐蚀协同失效行为,结果表明纯Fe样品的厚度随辐照腐蚀时间持续减薄。尽管该技术存在前期校准困难、对一些关心的轻元素检测不灵敏等缺陷,但对纯Fe样品厚度表现出较高的灵敏度[55]。国内Yao等[56, 57]利用低放射性、高辐照损伤率、实验参数可控的重离子模拟中子辐照效应,搭建了由样品室、强迫对流的LBE等温回路、重离子源构成的重离子辐照+LBE腐蚀同步实验的HLMIF装置,并在高辐照强度 (247 MeV Ar离子束,1.36 dpa) 下,对350 ℃流动氧饱和LBE (3.4×10-5%,0.6 m/s) 中的SIMP钢进行原位辐照-腐蚀实验。在腐蚀前对SIMP钢样品进行42 h的预氧化处理,经25 h辐照和LBE流动腐蚀后,SIMP钢样品表面形成了复杂的3层氧化层结构,最外层为Fe3O4、PbO/Pb非晶氧化层,中间层主要由Fe3O4组成,在靠近内氧化层边界处有少量Fe-Cr尖晶石形成,最内层为Cr2O3/SiO2非晶氧化层,氧化层总厚度为470 nm,明显高于同等温度和流动条件下非辐照样品的Fe3O4-(Fe, Cr)3O4双层氧化层厚度 (150 nm)。此外,在辐照腐蚀样品的中间氧化层中,首次观察到了与辐照离子方向平行的尺度从几十到200 nm的扩散通道,这些通道完全贯穿了中间氧化层,加速Fe向外扩散的速率,同时通道附近也聚集了少量的Fe-Cr尖晶石,并观察到Pb的渗透。由此可见,辐照不仅影响结构材料的强度和塑性,也一定程度增强了合金元素的扩散速率,加剧结构材料的腐蚀程度。因此,结构材料的抗辐照性能在铅基堆设计中不可忽视。

5 总结与展望

本文针对铅基反应堆冷却剂与结构材料不相容问题,从微观尺度腐蚀机理的模拟和实验研究、涂层材料和新合金的研发、动态腐蚀实验和建模研究、铅铋腐蚀实验装置的发展等角度综述了铅冷堆液态金属冷却剂腐蚀的国内外研究进展。其中,微观尺度腐蚀机理和耐蚀工艺国内外相关研究主要围绕氧化和溶解两种静态铅/铅铋共晶合金中的液态金属腐蚀机制。此外,材料在流动液态铅铋以及辐照环境中的耐蚀性能是铅基堆内主要服役结构钢不可或缺的性能评价指标,现有静态腐蚀防护工艺的可靠性也有必要作进一步动态腐蚀、辐照-腐蚀协同效应的实验验证。铅铋腐蚀实验平台,尤其是铅铋回路装置,搭建及日常运行成本高昂,氧控等相关配套工艺技术难度高。以上因素导致了目前国内液态铅铋中,动态腐蚀涉及材料相关的研究装置以罐式为主,且大多数没有集成氧控等配套系统。未来国内在大型液态金属回路实验平台的设计及腐蚀环境参数长期精确控制仍面临不少挑战。

参考文献

Rong J, Liu Z.

Development and prospect of advanced nuclear energy technology

[J]. Atomic Energy Sci. Technol., 2020, 54: 1638

[本文引用: 1]

荣 健, 刘 展.

先进核能技术发展与展望

[J]. 原子能科学技术, 2020, 54: 1638

[本文引用: 1]

Long B, Qin B, Ruan Z S, et al.

Selection and main problems of fuel and structural materials for Pb-Bi cold fast reactor

[A]. The Second Academic Conference on Nuclear Materials Technology Innovation [C]. Shanghai, 2019

[本文引用: 1]

龙 斌, 秦 博, 阮章顺 .

铅铋冷快堆燃料与结构材料的选择及主要问题

[A]. 第二届核材料技术创新学术会议 [C]. 上海, 2019

[本文引用: 1]

Anderoglu O, Marino A, Hosemann P.

Corrosion in heavy liquid metals for energy systems

[J]. JOM, 2021, 73: 3998

DOI      [本文引用: 1]

Hosemann P, Frazer D, Fratoni M, et al.

Materials selection for nuclear applications: Challenges and opportunities

[J]. Scr. Mater., 2018, 143: 181

DOI      URL     [本文引用: 1]

Lee S G, Shin Y H, Park J, et al.

High-temperature corrosion behaviors of structural materials for lead-alloy-cooled fast reactor application

[J]. Appl. Sci., 2021, 11: 2349

DOI      URL     [本文引用: 1]

The corrosion of nuclear-grade steels in lead–bismuth eutectic (LBE) complicates the realization of high coolant temperatures. Corrosion tests of T91, HT9, and SS316L were performed in static cells at 600 °C for 2000 h at an oxygen level of 10−6 wt.%. The obtained corrosion surfaces of post-processed samples were characterized by several microscopy methods. Up to 1000 h, all the alloys exhibited an evolution of duplex oxide layers, which were spalled until 2000 h due to their increased thickness and decreased integrity. Following the spallation, a thin internal Cr-rich oxide layer was formed above the Cr-depleted zone for T91 and HT9. SS316L was penetrated by LBE down to 300 μm in severe cases. A comparison on the corrosion depths of the materials with regard to the parabolic oxidation law with abundant literature data suggests that it may lose its validity once the duplex layer is destroyed as it allows LBE to penetrate the metal substrate.

Odette R, Zinkle S.

Structural Alloys for Nuclear Energy Applications

[M]. Newnes, 2019: 240

[本文引用: 1]

Furukawa T, Müller G, Schumacher G, et al.

Corrosion behavior of FBR candidate materials in stagnant Pb-Bi at elevated temperature

[J]. J. Nucl. Sci. Technol., 2004, 41: 265

DOI      URL     [本文引用: 1]

Xu G F, Li Y, Lei Y C, et al.

Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899

[本文引用: 3]

徐桂芳, 李 园, 雷玉成 .

相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响

[J]. 中国腐蚀与防护学报, 2021, 41: 899

DOI      [本文引用: 3]

对高氮奥氏体不锈钢在400 ℃不同相对流速 (0、0.92、1.27、1.61和2.01 m/s)、氧饱和的液态铅铋合金 (LBE) 中进行1000 h的腐蚀实验。采用扫描电镜 (SEM)、能谱仪 (EDS)、X射线衍射 (XRD) 对腐蚀后的试样表面和截面进行分析。结果表明:相对流速对试样的腐蚀行为有较大影响:静态试样,初始表面的氧化层可有效阻止高氮钢的进一步氧化;动态试样,表面初始氧化层遭到破坏,出现氧化腐蚀和溶解腐蚀共存状态。相对流速从0增至0.92 m/s,初始氧化层的破坏导致表层以下的合金发生扩散氧化,以氧化腐蚀为主;相对流速从0.92 m/s增加到2.01 m/s,较大的相对流速将扩散至表面的合金元素及时带走,溶解腐蚀占比逐渐增多,氧化腐蚀逐渐减少。氧化腐蚀产物为具有双层结构的氧化物颗粒,外层为疏松多孔的Fe<sub>3</sub>O<sub>4</sub>,内层为 (Fe,Cr)<sub>3</sub>O<sub>4</sub>。

Xu Y C, Zhang Y G, Li X Y, et al.

The adsorption and dissolution properties of iron surfaces in liquid lithium and lead under a fusion environment

[J]. J. Nucl. Mater., 2019, 524: 200

DOI      URL     [本文引用: 1]

Zhou T, Gao X, Ma Z W, et al.

Atomistic simulation of α-Fe(100)-lead-bismuth eutectic (LBE) solid-liquid interface

[J]. J. Nucl. Mater., 2021, 555: 153107

DOI      URL     [本文引用: 1]

Lei Y W, Zhang Y G, Li X Y, et al.

Simulation and experimental studies of the dissolution corrosion of 4H-SiC in liquid Pb/Bi

[J]. Appl. Surf. Sci., 2022, 585: 152686

DOI      URL     [本文引用: 3]

Ye Z F, Wang P, Dong H, et al.

Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation

[J]. Sci. Rep., 2016, 6: 35268

DOI      PMID      [本文引用: 1]

Clarification of the microscopic events that occur during oxidation is of great importance for understanding and consequently controlling the oxidation process. In this study the oxidation product formed on T91 ferritic/martensitic steel in oxygen saturated liquid lead-bismuth eutectic (LBE) at 823 K was characterized at the nanoscale using focused-ion beam and transmission electron microscope. An internal oxidation zone (IOZ) under the duplex oxide scale has been confirmed and characterized systematically. Through the microscopic characterization of the IOZ and the inner oxide layer, the micron-scale and nano-scale diffusion of Cr during the oxidation in LBE has been determined for the first time. The micron-scale diffusion of Cr ensures the continuous advancement of IOZ and inner oxide layer, and nano-scale diffusion of Cr gives rise to the typical appearance of the IOZ. Finally, a refined oxidation mechanism including the internal oxidation and the transformation of IOZ to inner oxide layer is proposed based on the discussion. The proposed oxidation mechanism succeeds in bridging the gap between the existing models and experimental observations.

Popovic M P, Chen K, Shen H, et al.

A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic

[J]. Acta Mater., 2018, 151: 301

DOI      URL     [本文引用: 3]

Hosemann P, Bai S, Bickel J, et al.

Corrosion testing of additively manufactured FeCrAl alloy in LBE

[J]. JOM, 2021, 73: 4009

DOI      [本文引用: 1]

Gao R, Xia L L, Zhang T, et al.

Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements

[J]. J. Nucl. Mater., 2014, 455: 407

DOI      URL    

Yang K, Yan W, Wang Z G, et al.

Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion

[J]. Acta Metall. Sin., 2016, 52: 1207

[本文引用: 1]

杨 柯, 严 伟, 王志光 .

核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展

[J]. 金属学报, 2016, 52: 1207

[本文引用: 1]

Song L L, Yang X Y, Zhao Y Y, et al.

Si-containing 9Cr ODS steel designed for high temperature application in lead-cooled fast reactor

[J]. J. Nucl. Mater., 2019, 519: 22

DOI      URL     [本文引用: 1]

Dai Y, Boutellier V, Gavillet D, et al.

FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE

[J]. J. Nucl. Mater., 2012, 431: 66

DOI      URL     [本文引用: 1]

Weisenburger A, Schroer C, Jianu A, et al.

Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models

[J]. J. Nucl. Mater., 2011, 415: 260

DOI      URL     [本文引用: 2]

Shi H, Jianu A, Fetzer R, et al.

Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead

[J]. Corros. Sci., 2021, 189: 109593

DOI      URL     [本文引用: 4]

Shi H.

Alumina forming alloys (steels, high entropy materials) for the mitigation of compatibility issues with liquid metals and steam in energy related, high-temperature applications

[A]. Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM) [C]. Hochschulschrift, 2020

Shi H, Fetzer R, Jianu A, et al.

Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb

[J]. Corros. Sci., 2021, 190: 109659

DOI      URL     [本文引用: 1]

Wu Z Y, Zhao X, Liu Y, et al.

Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600 oC

[J]. J. Nucl. Mater., 2020, 539: 152280

DOI      URL     [本文引用: 1]

Wan Q, Wu Z Y, Liu Y, et al.

Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating

[J]. Corros. Sci., 2021, 183: 109264

DOI      URL     [本文引用: 1]

Peng X Y, Tang Y H, Ding X B, et al.

Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead-bismuth eutectic alloy

[J]. Int. J. Miner. Metall. Mater., 2022, 29: 2032

DOI      [本文引用: 1]

Yang J, Shi K, Zhang W, et al.

A novel AlCrFeMoTi high-entropy alloy coating with a high corrosion-resistance in lead-bismuth eutectic alloy

[J]. Corros. Sci., 2021, 187: 109524

DOI      URL     [本文引用: 1]

Wei X S, Jin J L, Jiang Z Z, et al.

FeCrMoWCBY metallic glass with high corrosion resistance in molten lead–bismuth eutectic alloy

[J]. Corros. Sci., 2021, 190: 109688

DOI      URL     [本文引用: 4]

Lu Y H, Song Y Y, Chen S H, et al.

Effects of Al and Si on mechanical properties and corrosion resistance in liquid Pb-Bi eutectic of 9Cr2WVTa steel

[J]. Acta Metall. Sin., 2016, 52: 298

DOI      [本文引用: 1]

<p>9Cr2WVTa steel is one kind of reduced activation ferritic/martensitic (RAFM) steels, which are considered as the candidate structural materials for the accelerator driven subcritical system (ADS). Effects of Al and Si on the microstructure, tensile properties, impact toughness and corrosion behavior in liquid lead-bismuth eutectic (LBE) of 9Cr2WVTa steels were investigated by SEM, TEM, EPMA and micro hardness tester. The results showed that the addition of Al and Si promoted the formation of <em>&delta;</em>-ferrite, and Al was a much stronger ferrite stabilizer than Si. The presence of <em>&delta;</em>-ferrite significantly degraded the impact toughness of 9Cr2WVTa steels. <em>M</em><sub>23</sub>C<sub>6 </sub>carbides were observed to precipitate at the <em>&delta;</em>-ferrite grain boundaries, and stress concentrations were created at the carbide/matrix interface, resulting in the intergranular cracking after deformation. Static corrosion tests were conducted in oxygen-saturated LBE at 550 ℃ for 5000 h to study the effects of Al and Si on the corrosion behaviors in LBE. It is shown that the addition of Al and Si improved the corrosion resistance in LBE due to that appreciable enrichments of Al and Si in inner oxide layer increased the compactness of oxide layer and reduced the diffusion rates of alloy elements and oxygen atoms.</p>

鲁艳红, 宋元元, 陈胜虎 .

Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响

[J]. 金属学报, 2016, 52: 298

DOI      [本文引用: 1]

在9Cr2WVTa低活化铁素体/马氏体钢中添加合金元素Al和Si, 利用SEM, TEM, EPMA和显微硬度计研究了Al和Si对9Cr2WVTa钢显微组织,力学性能,冲击性能以及耐液态Pb-Bi共晶合金(LBE)腐蚀性能的影响. 结果表明, Al和Si缩小9Cr2WVTa合金的奥氏体相区, 促进&delta;铁素体的生成, 且Al元素的影响更加明显. 位于马氏体与&delta;铁素体界面的M<sub>23</sub>C<sub>6</sub>碳化物处易产生应力集中进而形成孔洞, 严重降低9Cr2WVTa合金的室温冲击性能, 断口呈现脆性断裂特征. 通过Al和Si的复合添加, 获得了具有较好力学性能和冲击性能的9Cr2WVTa合金, 合金在550 ℃静态液态Pb-Bi共晶合金中的耐腐蚀性能明显提高, 其原因在于合金内层氧化层中形成的Al和Si的氧化物, 提高了内层氧化层的致密性, 降低了合金元素及氧的扩散速率.

Chen S H, Rong L J.

Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel

[J]. J. Nucl. Mater., 2015, 459: 13

DOI      URL     [本文引用: 1]

OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermal-Hydraulics and Technologies [M]. Beijing: Science Press, 2014

[本文引用: 1]

戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册 : 性能、材料相容性、热工水力学和技术 [M]. 北京: 科学出版社, 2014

[本文引用: 1]

Rivai A K, Takahashi M.

Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic

[J]. Prog. Nucl. Energy, 2008, 50: 560

DOI      URL     [本文引用: 1]

Xiao Z Q, Liu J, Jiang Z Z, et al.

Corrosion behavior of refractory metals in liquid lead at 1000 °C for 1000 h

[J]. Nucl. Eng. Technol., 2022, 54: 1954

DOI      URL     [本文引用: 1]

Cairang W D, Ma S Q, Gong X, et al.

Oxidation mechanism of refractory Molybdenum exposed to oxygen-saturated lead-bismuth eutectic at 600 °C

[J]. Corros. Sci., 2021, 179: 109132

DOI      URL     [本文引用: 1]

Lu Y H, Wang Z B, Song Y Y, et al.

Effects of pre-formed nanostructured surface layer on oxidation behaviour of 9Cr2WVTa steel in air and liquid Pb-Bi eutectic alloy

[J]. Corros. Sci., 2016, 102: 301

DOI      URL     [本文引用: 1]

Zhang W H, Wang Z B, Lu K.

Enhanced oxidation resistance of a reduced activation ferritic/martensitic steel in liquid Pb-Bi eutectic alloy by preforming a gradient nanostructured surface layer

[J]. J. Nucl. Mater., 2018, 507: 151

DOI      URL     [本文引用: 1]

Li C, Fang X D, Wang Q S, et al.

A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead-bismuth eutectic flow pattern

[J]. Corros. Sci., 2021, 180: 109214

DOI      URL     [本文引用: 7]

Kikuchi K, Kurata Y, Saito S, et al.

Corrosion-erosion test of SS316 in flowing Pb-Bi

[J]. J. Nucl. Mater., 2003, 318: 348

DOI      URL     [本文引用: 2]

Saito S, Kikuchi K, Hamaguchi D, et al.

Corrosion–erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop

[J]. J. Nucl. Mater., 2012, 431: 91

DOI      URL     [本文引用: 1]

Talaat K, Hassan M M, Cakez C, et al.

Design of specimen holders for flow accelerated corrosion experiments in molten lead with numerical evaluation of pressure losses

[J]. Nucl. Eng. Des., 2021, 385: 111522

DOI      URL     [本文引用: 1]

Schroer C, Tsisar V, Durand A, et al.

Corrosion in iron and Steel T91 caused by flowing lead-bismuth eutectic at 400 ℃ and 10-7 mass% dissolved oxygen

[J]. J. Nucl. Eng. Rad. Sci., 2019, 5: 011006

[本文引用: 1]

Lambrinou K, Koch V, Coen G, et al.

Corrosion scales on various steels after exposure to liquid lead–bismuth eutectic

[J]. J. Nucl. Mater., 2014, 450: 244

DOI      URL    

Tsisar V, Schroer C, Wedemeyer O, et al.

Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen

[J]. J. Nucl. Mater., 2017, 494: 422

DOI      URL     [本文引用: 1]

Kieser M, Muscher H, Weisenburger A, et al.

Liquid metal corrosion/erosion investigations of structure materials in lead cooled systems: Part 1

[J]. J. Nucl. Mater., 2009, 392: 405

DOI      URL     [本文引用: 1]

Tsisar V, Gavrilov S, Schroer C, et al.

Long-term corrosion performance of T91 ferritic/martensitic steel at 400 °C in flowing Pb-Bi eutectic with 2×10-7 mass% dissolved oxygen

[J]. Corros. Sci., 2020, 174: 108852

DOI      URL     [本文引用: 1]

Ilinc̆ev G, Kárník D, Paulovic̆ M, et al.

The impact of the composition of structural steels on their corrosion stability in liquid Pb-Bi at 500 and 400 °C with different oxygen concentrations

[J]. J. Nucl. Mater., 2004, 335: 210

DOI      URL     [本文引用: 1]

Chen G, Ju N, Lei Y C, et al.

Corrosion behavior of 410 stainless steel in flowing lead-bismuth eutectic alloy at 550 °C

[J]. J. Nucl. Mater., 2019, 522: 168

DOI      URL     [本文引用: 1]

Li C, Liu Y J, Zhang F F, et al.

Erosion-corrosion of 304N austenitic steels in liquid Pb-Bi flow perpendicular to steel surface

[J]. Mater. Charact., 2021, 175: 111054

DOI      URL     [本文引用: 2]

Balbaud-Célérier F, Barbier F.

Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

[J]. J. Nucl. Mater., 2001, 289: 227.

DOI      URL     [本文引用: 3]

Balbaud-Célérier F, Terlain A.

Influence of the Pb-Bi hydrodynamics on the corrosion of T91 martensitic steel and pure iron

[J]. J. Nucl. Mater., 2004, 335: 204

DOI      URL     [本文引用: 1]

Zhang J S, Li N.

Analysis on liquid metal corrosion-oxidation interactions

[J]. Corros. Sci., 2007, 49: 4154

DOI      URL     [本文引用: 1]

Steiner H, Schroer C, Voß Z, et al.

Modeling of oxidation of structural materials in LBE systems

[J]. J. Nucl. Mater., 2008, 374: 211

DOI      URL     [本文引用: 1]

Steiner H.

Determination of dissolution rates of f/m steels in LBE from measured evolutions of oxide scale thickness

[J]. J. Nucl. Mater., 2009, 383: 267

DOI      URL     [本文引用: 1]

Stergar E, Eremin S G, Gavrilov S, et al.

LEXUR-II-LBE an irradiation program in lead-bismuth to high dose

[J]. J. Nucl. Mater., 2014, 450: 262

DOI      URL     [本文引用: 4]

Stergar E, Eremin S G, Gavrilov S, et al.

Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L

[J]. J. Nucl. Mater., 2016, 473: 28

DOI      URL     [本文引用: 1]

Schmidt F, Chancey M, Kim H, et al.

Continuous monitoring of pure Fe corrosion in lead-bismuth eutectic under irradiation with proton-induced X-ray emission spectroscopy

[J]. JOM, 2021, 73: 4041

DOI      [本文引用: 1]

Yao C F, Wang Z G, Zhang H P, et al.

HLMIF, a facility for investigating the synergistic effect of ion-irradiation and LBE corrosion

[J]. J. Nucl. Mater., 2019, 523: 260

DOI      URL     [本文引用: 1]

Yao C F, Zhang H P, Chang H L, et al.

Structure of surface oxides on martensitic steel under simultaneous ion irradiation and molten LBE corrosion

[J]. Corros. Sci., 2022, 195: 109953

DOI      URL     [本文引用: 1]

/