|
|
|
| Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting |
YI Junda1,2, LENG Ao3, GONG Delun1,2, WEI Boxin1,2,4( ) |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang 110016, China 4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore |
|
Cite this article:
YI Junda, LENG Ao, GONG Delun, WEI Boxin. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 49-59.
|
|
|
Abstract The advancement of additive manufacturing has provided new opportunities for the personalized customization of biomedical Ti-alloys. In this study, a novel β-Ti alloy, Ti15Nb2.5Zr4Sn, was fabricated by using electron beam melting (EBM), and its microstructure, mechanical properties, electrochemical behavior in simulated body fluid (SBF), and biocompatibility were systematically investigated in comparison with the conventional Ti-6Al-4V (TC4). The results showed that EBM-Ti15Nb2.5Zr4Sn exhibits a β-phase-dominated microstructure with a pronounced crystallographic texture. Its elastic modulus is approximately 40 GPa, which is closer to that of human cortical bone (10-30 GPa), thereby may be favor to alleviate the so called “stress shielding effect” caused by bone implants with a higher elastic modulus. The EBM-Ti15Nb2.5Zr4Sn alloy in SBF solution presented a wide passivation range (0.22-1.12 V) with a low corrosion current density (308 nA·cm-2), indicating the formation of a stable and protective passive film on its surface. X-ray photoelectron spectroscopy (XPS) analysis identified that the formed passive film composted of TiO2, Nb2O5, ZrO2 and SnO2. Cell culture experiments further demonstrated that MC3T3-E1 pre-osteoblasts adhered well to the Ti15Nb2.5Zr4Sn surface with intact cytoskeleton structures, indicating excellent biocompatibility of the alloy. In summary, the EBM-fabricated Ti15Nb2.5Zr4Sn alloy combines low elastic modulus, high corrosion resistance, and favorable biological activity, making it a promising candidate for next-generation orthopedic implant applications.
|
|
Received: 25 July 2025
32134.14.1005.4537.2025.236
|
|
|
| Fund: National Natural Science Foundation of China(52401254) |
| [1] |
Zhang E L, Wang X Y, Han Y. Research status of biomedical porous Ti and its alloy in China [J]. Acta Metall. Sin., 2017, 53: 1555
doi: 10.11900/0412.1961.2017.00324
|
|
张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状 [J]. 金属学报, 2017, 53: 1555
doi: 10.11900/0412.1961.2017.00324
|
| [2] |
Frazier W E, William E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
| [3] |
Rho J Y, Tsui T Y, Pharr G M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation [J]. Biomaterials, 1997, 18: 1325
pmid: 9363331
|
| [4] |
Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3: 277
pmid: 17234466
|
| [5] |
Cui Z D, Zhu J M, Jiang H, et al. Research progress of the surface modification of titanium and titanium alloys for biomedical application [J]. Acta Metall. Sin., 2022, 58: 837
doi: 10.11900/0412.1961.2022.00150
|
|
崔振铎, 朱家民, 姜 辉 等. Ti及钛合金表面改性在生物医用领域的研究进展 [J]. 金属学报, 2022, 58: 837
doi: 10.11900/0412.1961.2022.00150
|
| [6] |
Tian Y Y, Zhang L G, Wu D, et al. Achieving stable ultra-low elastic modulus in near-β titanium alloys through cold rolling and pre-strain [J]. Acta Mater., 2025, 286: 120726.
doi: 10.1016/j.actamat.2025.120726
|
| [7] |
Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young'smodulus [J]. npj Comput. Mater., 2020, 6: 101
doi: 10.1038/s41524-020-00372-w
|
| [8] |
Li C M, Chui P F, Ai T T, et al. Improving the strength and corrosion resistance of the biomedical Ti2448 alloy through the addition of trace interstitial nitrogen [J]. J. Alloy. Compd., 2025, 1020: 179362
doi: 10.1016/j.jallcom.2025.179362
|
| [9] |
Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
doi: 10.11900/0412.1961.2017.00288
|
|
于振涛, 余 森, 程 军 等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
doi: 10.11900/0412.1961.2017.00288
|
| [10] |
Ji S X. Study on the microstructure and properties of Ti-34Nb-6Zr alloy for biomedical applications [D]. Tianjin: Tianjin University, 2007
|
|
计双兴. 生物医用钛合金Ti-34Nb-6Zr的组织及性能研究 [D]. 天津: 天津大学, 2007
|
| [11] |
Liu M, Wang J, Zhu C H, et al. Electrochemical corrosion behavior of 3D-printed NiTi shape memory alloy in a simulated oral environment [J]. J. Chin. Soci. Corros. Prot., 2023, 43: 781
|
|
刘 明, 王 杰, 朱春晖 等. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 781
|
| [12] |
Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
|
|
郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
|
| [13] |
Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 oC and its effect on mechanical properties of hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
|
|
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
|
| [14] |
Lei T, Chen S G, Liu X L, et al. Corrosion behavior of laser additive manufacturing AlSi10Mg Al-alloy in ethylene glycol coolant and detection of coolant degradation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1014
|
|
雷 涛, 陈绍高, 刘秀利 等. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 1014
|
| [15] |
Chen Y Y, Shi G H, Du Z M, et al. Research progress on additive manufacturing of TiAl alloys [J]. Acta Metall. Sin., 2024, 60: 1
|
|
陈玉勇, 时国浩, 杜之明 等. 增材制造TiAl合金的研究进展 [J]. 金属学报, 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
|
| [16] |
Mao Y M, Zhao Q Y, Geng J H, et al. Research status and application of powder bed fusion additive manufactured titanium alloys [J]. Chin. J. Nonferrous Met., 24, 34: 2831
|
|
毛雅梅, 赵秦阳, 耿纪华 等. 粉末床熔融式增材制造钛合金研究进展及应用 [J]. 中国有色金属学报, 2024, 34: 2831
|
| [17] |
Gokan K, Yamagishi Y, Mizuta K, et al. Effect of process parameters on the microstructure and high-temperature strengths of titanium aluminide alloy fabricated by electron beam melting [J]. Mater. Trans., 2023, 64: 104
doi: 10.2320/matertrans.MT-MLA2022016
|
| [18] |
Ren D C, Zhang H B, Zhao X D, et al. Influence of manufacturing parameters on the properties of electron beam melted Ti-Ni alloy [J]. Acta Metall. Sin., 2020, 56: 1103
doi: 10.11900/0412.1961.2019.00410
|
|
任德春, 张慧博, 赵晓东 等. 打印参数对电子束增材制造Ti-Ni合金性能的影响 [J]. 金属学报, 2020, 56: 1103
doi: 10.11900/0412.1961.2019.00410
|
| [19] |
Thalavai Pandian K, Neikter M, Bahbou F, et al. Elevated-temperature tensile properties of low-temperature HIP-treated EBM-built Ti-6Al-4V [J]. Materials, 2022, 15: 3624
doi: 10.3390/ma15103624
|
| [20] |
Sherif E S M, Bahri Y A, Alharbi H F, et al. Corrosion passivation in simulated body fluid of Ti-Zr-Ta-xSn alloys as biomedical materials [J]. Materials, 2023, 16: 4603
doi: 10.3390/ma16134603
|
| [21] |
Zhang S S, Liu Y C, Xu T W, et al. Effect of build-up direction and annealing on corrosion properties of selected laser melting Ti6Al4V alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 995
|
|
张珊珊, 刘元才, 徐铁伟 等. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 995
doi: 10.11902/1005.4537.2024.220
|
| [22] |
Church N L, Talbot C E P, Jones N G. On the influence of thermal history on the martensitic transformation in Ti-24Nb-4Zr-8Sn (wt%) [J]. Shap. Mem. Superelast., 2021, 7: 166
doi: 10.1007/s40830-021-00309-2
|
| [23] |
Yang R, Hao Y L, Obbard E G, et al. Orthorhombic phase transformations in titanium alloys and their applications [J]. Acta Metall. Sin., 2010, 46: 1443
doi: 10.3724/SP.J.1037.2010.00483
|
|
杨 锐, 郝玉琳, Obbard E G 等. 钛合金中的正交相变及其应用 [J]. 金属学报, 2010, 46: 1443
|
| [24] |
Lee B S, Im Y D, Kim H G, et al. Stress-induced α″martensitic transformation mechanism in deformation twinning of metastable β-type Ti-27Nb-0.5Ge alloy under tension [J]. Mater. Trans., 2016, 57: 1868
doi: 10.2320/matertrans.M2016208
|
| [25] |
Shi Y S, Wu H Z, Yan C Z, et al. Four-dimensional printing—The additive manufacturing technology of intelligent components [J]. J. Mech. Eng., 2020, 56: 1
|
|
史玉升, 伍宏志, 闫春泽 等. 4D打印—智能构件的增材制造技术 [J]. 机械工程学报, 2020, 56: 1
doi: 10.3901/JME.2020.15.001
|
| [26] |
Tian Y X, Li S J, Hao Y L, et al. High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy [J]. Acta Metall. Sin., 2012, 48: 837
doi: 10.3724/SP.J.1037.2012.00007
|
|
田宇兴, 李述军, 郝玉琳 等. Ti2448合金高温变形行为及组织演变机制的转变 [J]. 金属学报, 2012, 48: 837
doi: 10.3724/SP.J.1037.2012.00007
|
| [27] |
Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
|
|
戴进财, 闵小华, 周克松 等. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 [J]. 金属学报, 2021, 57: 767
doi: 10.11900/0412.1961.2020.00286
|
| [28] |
Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
|
|
严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81
doi: 10.11902/1005.4537.2024.246
|
| [29] |
Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J] J. Chin. Soc. Corros. Prot., 2021, 41: 71
|
|
史昆玉, 吴伟进, 张 毅 等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
doi: 10.11902/1005.4537.2019.270
|
| [30] |
Jirka I, Vandrovcová M, Frank O, et al. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells [J]. Mater. Sci. Eng., 2013, 33C: 1636
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|