Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 49-59    DOI: 10.11902/1005.4537.2025.236
Current Issue | Archive | Adv Search |
Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting
YI Junda1,2, LENG Ao3, GONG Delun1,2, WEI Boxin1,2,4()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang 110016, China
4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
Cite this article: 

YI Junda, LENG Ao, GONG Delun, WEI Boxin. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 49-59.

Download:  HTML  PDF(8958KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The advancement of additive manufacturing has provided new opportunities for the personalized customization of biomedical Ti-alloys. In this study, a novel β-Ti alloy, Ti15Nb2.5Zr4Sn, was fabricated by using electron beam melting (EBM), and its microstructure, mechanical properties, electrochemical behavior in simulated body fluid (SBF), and biocompatibility were systematically investigated in comparison with the conventional Ti-6Al-4V (TC4). The results showed that EBM-Ti15Nb2.5Zr4Sn exhibits a β-phase-dominated microstructure with a pronounced crystallographic texture. Its elastic modulus is approximately 40 GPa, which is closer to that of human cortical bone (10-30 GPa), thereby may be favor to alleviate the so called “stress shielding effect” caused by bone implants with a higher elastic modulus. The EBM-Ti15Nb2.5Zr4Sn alloy in SBF solution presented a wide passivation range (0.22-1.12 V) with a low corrosion current density (308 nA·cm-2), indicating the formation of a stable and protective passive film on its surface. X-ray photoelectron spectroscopy (XPS) analysis identified that the formed passive film composted of TiO2, Nb2O5, ZrO2 and SnO2. Cell culture experiments further demonstrated that MC3T3-E1 pre-osteoblasts adhered well to the Ti15Nb2.5Zr4Sn surface with intact cytoskeleton structures, indicating excellent biocompatibility of the alloy. In summary, the EBM-fabricated Ti15Nb2.5Zr4Sn alloy combines low elastic modulus, high corrosion resistance, and favorable biological activity, making it a promising candidate for next-generation orthopedic implant applications.

Key words:  additive manufacturing      β-Ti alloy      electron beam melting      corrosion electrochemistry      elastic modulus      passive film     
Received:  25 July 2025      32134.14.1005.4537.2025.236
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52401254)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.236     OR     https://www.jcscp.org/EN/Y2026/V46/I1/49

Fig.1  Morphology, particle size distribution of metal powders, and schematic illustration of EBM additive manufacturing process: (a) low-magnification SEM image of metal powders; (b) high-magnification SEM image of metal powders; (c) particle size distribution histogram of powders, and (d) schematic diagram of the EBM process
Fig.2  Comparison of grain orientation maps and pole figures for different samples: (a) Inverse pole figure (IPF) map of Ti-6Al-4V, (b) Pole figures of Ti-6Al-4V, (c) IPF map of EBM-Ti15Nb2.5Zr4Sn, (d) Pole figures of EBM-Ti15Nb2.5Zr4Sn
Fig.3  XRD patterns of EBM-Ti15Nb2.5Zr4Sn and TC4 Ti-alloys
Fig.4  Tensile stress-strain curve of EBM-Ti15Nb2.5Zr4Sn alloy at room temperature
Fig.5  Comparative mechanical properties of the EBM-Ti15Nb2.5Zr4Sn alloy: Bar chart of elastic modulus of the EBM-Ti15Nb2.5Zr4Sn and TC4 alloys
Fig.6  Corrosion potential of TC4 and EBM-Ti15Nb2.5-Zr4Sn alloys during 168 h of immersion in simulated body fluids
Fig.7  Nyquist plots (a, c) and Bode plots (b, d) of TC4 alloy after immersion in simulated body fluid for 168 h (a, b) and EBM-Ti15Nb2.5Zr4Sn alloy after immersion for the same duration (c, d)
Fig.8  Equivalent electrical circuit diagram
TypeTime / dRs / Ω·cm2Qf / 10-5 S·cm-2·S nn1Rf / Ω·cm2Qdl / 10-5 S·cm-2·S nn2Rct / 106 Ω·cm2
TC4 alloy022.452.480.917.930.181.000.83
121.411.440.9224.770.740.918.20
220.931.310.9322.230.760.914.07
319.991.180.9418.760.820.923.44
420.781.170.9421.100.780.923.99
519.611.050.9517.940.890.915.81
620.931.040.9518.530.870.916.93
720.521.110.9422.480.760.925.94
EBM-Ti15Nb2.5Zr4Sn020.742.020.9323.301.620.920.71
alloy120.11.490.9417.811.410.912.65
218.941.080.9518.601.180.917.07
318.710.880.9813.561.580.895.36
420.380.850.9815.021.510.895.82
520.241.270.9418.861.000.921.54
621.150.800.9815.121.450.896.16
721.090.820.9815.661.380.896.12
Table 1  EIS fitting results
Fig.9  Potentiodynamic polarization curves of TC4 and EBM-Ti15Nb2.5Zr4Sn alloys in SBF after 168 h of corrosion
ParametersIcorr / nA·cm-2Ecorr/ mVEpit/ Vβa/ mV·dec-1βc/ mV·dec-1
TC4284-300.21.1590.1590.124
EBM-Ti15Nb2.5Zr4Sn308-312.71.1320.1560.120
Table 2  Fitted electrochemical parameters from potentiodynamic polarization curves of TC4 and EBM-Ti15Nb2.5Zr4Sn alloys
Fig.10  Current-time curves of TC4 and Ti15Nb2.5Zr4Sn alloys under potentiostatic polarization at 0.6 V vs. SCE
Fig.11  XPS spectrum of the passivation film on the surface of EBM-Ti15Nb2.5Zr4Sn: (a) Ti 2p, (b) Zr 3d, (c) Nb 3d, (d) Sn 3d
Fig.12  CLSM images of MC3T3-E1 cells cultured on the surface of EBM-Ti15Nb2.5Zr4Sn alloy: (a) cell nuclei stained with DAPI (blue), (b) actin filaments labeled with FITC-phalloidin (green), (c) merged image
[1] Zhang E L, Wang X Y, Han Y. Research status of biomedical porous Ti and its alloy in China [J]. Acta Metall. Sin., 2017, 53: 1555
doi: 10.11900/0412.1961.2017.00324
张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状 [J]. 金属学报, 2017, 53: 1555
doi: 10.11900/0412.1961.2017.00324
[2] Frazier W E, William E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
[3] Rho J Y, Tsui T Y, Pharr G M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation [J]. Biomaterials, 1997, 18: 1325
pmid: 9363331
[4] Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3: 277
pmid: 17234466
[5] Cui Z D, Zhu J M, Jiang H, et al. Research progress of the surface modification of titanium and titanium alloys for biomedical application [J]. Acta Metall. Sin., 2022, 58: 837
doi: 10.11900/0412.1961.2022.00150
崔振铎, 朱家民, 姜 辉 等. Ti及钛合金表面改性在生物医用领域的研究进展 [J]. 金属学报, 2022, 58: 837
doi: 10.11900/0412.1961.2022.00150
[6] Tian Y Y, Zhang L G, Wu D, et al. Achieving stable ultra-low elastic modulus in near-β titanium alloys through cold rolling and pre-strain [J]. Acta Mater., 2025, 286: 120726.
doi: 10.1016/j.actamat.2025.120726
[7] Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young'smodulus [J]. npj Comput. Mater., 2020, 6: 101
doi: 10.1038/s41524-020-00372-w
[8] Li C M, Chui P F, Ai T T, et al. Improving the strength and corrosion resistance of the biomedical Ti2448 alloy through the addition of trace interstitial nitrogen [J]. J. Alloy. Compd., 2025, 1020: 179362
doi: 10.1016/j.jallcom.2025.179362
[9] Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
doi: 10.11900/0412.1961.2017.00288
于振涛, 余 森, 程 军 等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
doi: 10.11900/0412.1961.2017.00288
[10] Ji S X. Study on the microstructure and properties of Ti-34Nb-6Zr alloy for biomedical applications [D]. Tianjin: Tianjin University, 2007
计双兴. 生物医用钛合金Ti-34Nb-6Zr的组织及性能研究 [D]. 天津: 天津大学, 2007
[11] Liu M, Wang J, Zhu C H, et al. Electrochemical corrosion behavior of 3D-printed NiTi shape memory alloy in a simulated oral environment [J]. J. Chin. Soci. Corros. Prot., 2023, 43: 781
刘 明, 王 杰, 朱春晖 等. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 781
[12] Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
[13] Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 oC and its effect on mechanical properties of hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
[14] Lei T, Chen S G, Liu X L, et al. Corrosion behavior of laser additive manufacturing AlSi10Mg Al-alloy in ethylene glycol coolant and detection of coolant degradation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1014
雷 涛, 陈绍高, 刘秀利 等. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 1014
[15] Chen Y Y, Shi G H, Du Z M, et al. Research progress on additive manufacturing of TiAl alloys [J]. Acta Metall. Sin., 2024, 60: 1
陈玉勇, 时国浩, 杜之明 等. 增材制造TiAl合金的研究进展 [J]. 金属学报, 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
[16] Mao Y M, Zhao Q Y, Geng J H, et al. Research status and application of powder bed fusion additive manufactured titanium alloys [J]. Chin. J. Nonferrous Met., 24, 34: 2831
毛雅梅, 赵秦阳, 耿纪华 等. 粉末床熔融式增材制造钛合金研究进展及应用 [J]. 中国有色金属学报, 2024, 34: 2831
[17] Gokan K, Yamagishi Y, Mizuta K, et al. Effect of process parameters on the microstructure and high-temperature strengths of titanium aluminide alloy fabricated by electron beam melting [J]. Mater. Trans., 2023, 64: 104
doi: 10.2320/matertrans.MT-MLA2022016
[18] Ren D C, Zhang H B, Zhao X D, et al. Influence of manufacturing parameters on the properties of electron beam melted Ti-Ni alloy [J]. Acta Metall. Sin., 2020, 56: 1103
doi: 10.11900/0412.1961.2019.00410
任德春, 张慧博, 赵晓东 等. 打印参数对电子束增材制造Ti-Ni合金性能的影响 [J]. 金属学报, 2020, 56: 1103
doi: 10.11900/0412.1961.2019.00410
[19] Thalavai Pandian K, Neikter M, Bahbou F, et al. Elevated-temperature tensile properties of low-temperature HIP-treated EBM-built Ti-6Al-4V [J]. Materials, 2022, 15: 3624
doi: 10.3390/ma15103624
[20] Sherif E S M, Bahri Y A, Alharbi H F, et al. Corrosion passivation in simulated body fluid of Ti-Zr-Ta-xSn alloys as biomedical materials [J]. Materials, 2023, 16: 4603
doi: 10.3390/ma16134603
[21] Zhang S S, Liu Y C, Xu T W, et al. Effect of build-up direction and annealing on corrosion properties of selected laser melting Ti6Al4V alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 995
张珊珊, 刘元才, 徐铁伟 等. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 995
doi: 10.11902/1005.4537.2024.220
[22] Church N L, Talbot C E P, Jones N G. On the influence of thermal history on the martensitic transformation in Ti-24Nb-4Zr-8Sn (wt%) [J]. Shap. Mem. Superelast., 2021, 7: 166
doi: 10.1007/s40830-021-00309-2
[23] Yang R, Hao Y L, Obbard E G, et al. Orthorhombic phase transformations in titanium alloys and their applications [J]. Acta Metall. Sin., 2010, 46: 1443
doi: 10.3724/SP.J.1037.2010.00483
杨 锐, 郝玉琳, Obbard E G 等. 钛合金中的正交相变及其应用 [J]. 金属学报, 2010, 46: 1443
[24] Lee B S, Im Y D, Kim H G, et al. Stress-induced α″martensitic transformation mechanism in deformation twinning of metastable β-type Ti-27Nb-0.5Ge alloy under tension [J]. Mater. Trans., 2016, 57: 1868
doi: 10.2320/matertrans.M2016208
[25] Shi Y S, Wu H Z, Yan C Z, et al. Four-dimensional printing—The additive manufacturing technology of intelligent components [J]. J. Mech. Eng., 2020, 56: 1
史玉升, 伍宏志, 闫春泽 等. 4D打印—智能构件的增材制造技术 [J]. 机械工程学报, 2020, 56: 1
doi: 10.3901/JME.2020.15.001
[26] Tian Y X, Li S J, Hao Y L, et al. High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy [J]. Acta Metall. Sin., 2012, 48: 837
doi: 10.3724/SP.J.1037.2012.00007
田宇兴, 李述军, 郝玉琳 等. Ti2448合金高温变形行为及组织演变机制的转变 [J]. 金属学报, 2012, 48: 837
doi: 10.3724/SP.J.1037.2012.00007
[27] Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
戴进财, 闵小华, 周克松 等. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 [J]. 金属学报, 2021, 57: 767
doi: 10.11900/0412.1961.2020.00286
[28] Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81
doi: 10.11902/1005.4537.2024.246
[29] Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J] J. Chin. Soc. Corros. Prot., 2021, 41: 71
史昆玉, 吴伟进, 张 毅 等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
doi: 10.11902/1005.4537.2019.270
[30] Jirka I, Vandrovcová M, Frank O, et al. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells [J]. Mater. Sci. Eng., 2013, 33C: 1636
[1] LAN Botao, WU Bin, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[4] ZHANG Junnan, PENG Can, FU Qi, ZHANG Liang, SONG Guangling. Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[5] ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai. Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] GU Qingyu, SONG Yanfei, ZHANG Liangliang, WANG Nan, LEI Xiaowei. Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2026, 46(1): 103-114.
[7] LI Kexuan, WANG Yipeng, LIAO Bokai. Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[8] HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[9] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[10] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[11] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[12] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[13] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[14] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[15] LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
No Suggested Reading articles found!