Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 506-514    DOI: 10.11902/1005.4537.2024.215
Current Issue | Archive | Adv Search |
Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values
JIN Zhenting, SONG Qining(), LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua
School of Materials Science and Engineering, Hohai University, Changzhou 213251, China
Cite this article: 

JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 506-514.

Download:  HTML  PDF(7999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Cu-alloys used for marine propeller, including Mg-Al bronze (MAB), Ni-Al bronze (NAB) and Mn brass (MB) in 3.5%NaCl solutions with different pH values (2, 4, 6.8, 10, 12) was assessed via long-term mass change measurement, electrochemical test, and corrosion morphology observation. The results show that the corrosion rate of the three Cu-alloys is the highest when the solution pH = 2, this may be due to the severe dissolution of κ phase and preferential corrosion of β/β′ phases. When the solution pH = 4, 6.8 and 10, the corrosion mass loss rate of the three Cu-alloys is close, and for the solution pH = 12, the three Cu-alloys exhibit passive behavior with the least mass loss. MAB presents the highest corrosion rate and the worst corrosion resistance in any test solution. The mass loss rate of NAB in the solution of pH = 12 is close to that of MB, while the mass loss rate in other solutions is the lowest. After long-term immersion in the solution of pH = 6 and 8 respectively, the corrosion products film formed on the NAB surface exhibits the best protectiveness. In the solution of pH = 12, passive films may form on the surfaces of the three Cu-alloys, and their impedance increases rapidly with extended immersion time. The ranking order of the protectiveness of passive films is as: MB, NAB and MAB from high to low, which consistent with the mass change measurement results.

Key words:  Cu-alloy      corrosion      gravimetric measurement      electrochemistry     
Received:  19 July 2024      32134.14.1005.4537.2024.215
TG174  
Fund: Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province(2023CL09)
Corresponding Authors:  SONG Qining, E-mail: qnsong@hhu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.215     OR     https://www.jcscp.org/EN/Y2025/V45/I2/506

MaterialAlFeNiMnZnCu
MAB7.283.622.1012.35-Bal.
NAB9.184.064.491.03-Bal.
MB0.860.890.222.17Bal.55.7
Table 1  Chemical composition of the three copper alloys (mass fraction / %)
Fig.1  Optical microstructures of the three copper alloys: (a) MAB, (b) NAB, (c) MB
Fig.2  Mass loss rate results of the three copper alloys after long-term immersion in the solutions with different pH values: (a) MAB, (b) NAB, (c) MB
Fig.3  Polarization curves of MAB (a, d), NAB (b, e) and MB (c, f) in 3.5%NaCl solutions with different pH values: (a-c) initial state, (d-f) after 720 h immersion
Immersion time / hpH valueMABNABMB
Ecorr / mVIcorr / A·cm-2Ecorr / mVIcorr / A·cm-2Ecorr / mVIcorr / A·cm-2
02-558.81.49 × 10-5-333.41.29 × 10-5-462.52.35 × 10-5
4-407.42.66 × 10-6-291.93.89 × 10-6-401.24.09 × 10-6
6.8-426.21.58 × 10-6-274.16.74 × 10-6-416.21.97 × 10-6
10-382.13.69 × 10-6-262.37.22 × 10-6-411.41.78 × 10-6
12-380.91.11 × 10-5-333.81.39 × 10-5-214.24.61 × 10-7
7202-332.32.26 × 10-6-283.82.45 × 10-6-328.54.96 × 10-6
4-623.84.58 × 10-6-495.37.98 × 10-7-420.91.92 × 10-6
6.8-603.56.34 × 10-6-265.22.35 × 10-7-428.79.35 × 10-7
10-523.41.89 × 10-6-428.01.73 × 10-7-431.22.38 × 10-7
12-506.61.46 × 10-6-577.43.43 × 10-8-493.28.19 × 10-8
Table 2  Fitting results of the polarization curves for the three copper alloys in different solutions
Fig.4  Nyquist (a, c, e) and Bode (b, d, f) plots of the MAB (a, b), NAB (c, d) and MB (e, f) after long-term immersion in the solutions with different pH values
Fig.5  Equivalent circuits used for fitting the EIS results shown in Fig.4
pH valueMaterialImmersion time / hRsΩ·cm2Y1Ω-1·s nn1RfkΩ·cm2Y2Ω-1·s nn2RctkΩ·cm2WΩ-1·s-0.5
6.8MAB06.324.435 × 10-40.780.263.578 × 10-50.991.465.23 × 10-3
2409.824.989 × 10-40.742.671.736 × 10-30.683.91-
72011.654.133 × 10-40.718.251.435 × 10-30.937.27-
NAB05.708.026 × 10-40.650.825.301 × 10-30.600.943.81 × 10-4
2407.031.808 × 10-40.856.682.085 × 10-30.7814.44-
72010.561.442 × 10-40.8410.891.585 × 10-50.8631.20-
MB06.352.065 × 10-40.800.559.498 × 10-40.564.67-
24011.523.102 × 10-40.628.622.555 × 10-40.6717.34-
72012.462.199 × 10-40.709.829.381 × 10-50.7424.43-
12MAB05.802.19 × 10-40.730.506.507 × 10-40.850.964.27 × 10-3
2408.883.994 × 10-40.713.317.778 × 10-40.856.62-
7209.973.727 × 10-40.689.021.285 × 10-30.9512.07-
NAB07.102.327 × 10-50.890.769.484 × 10-50.549.047.12 × 10-4
2407.821.264 × 10-40.8012.694.457 × 10-70.77146.5-
7209.401.083 × 10-40.8019.545.952 × 10-70.81171.8-
MB035.691.263 × 10-50.925.745.031 × 10-50.5134.61-
2408.944.216 × 10-50.8026.033.123 × 10-50.6679.29-
72010.813.107 × 10-50.8236.343.789 × 10-50.72180.50-
Table 3  Fitting data of the EIS results for the three copper alloys in the solutions with different pH values
Fig.6  Cross-sectional morphologies of MAB (a-c), NAB (d-f) and MB (g-i) after 720 h immersion in 3.5%NaCl solutions with pH values of 2 (a, d, g), 6.8 (b, e, h) and 12 (c, f, i)
1 Zhu J, Jiang Y J, He D C. Comparison of copper alloy for marine propeller manufacture [J]. Mar. Technol., 2019, (6): 64
朱 晶, 姜元军, 何大川. 船用螺旋桨常用铜合金材料比较 [J]. 造船技术, 2019, (6): 64
2 Li S Y, Song J L, Wei H, et al. Corrosion behavior of Cu-Ti alloy in simulated S2- contaminated seawater [J]. Rare Metal Mat. Eng., 2022, 51: 895
李思远, 宋坚磊, 卫 欢 等. Cu-Ti合金在模拟S2-污染海水中的腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 895
3 Wharton J A, Stokes K R. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion [J]. Electrochim. Acta, 2008, 53: 2463
4 Luo Z Q, Xin B L, Zhang W W, et al. Influence of pH value on corrosion of wear-resistant casting alloy Cu-17Ni-3Al-X [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2011, 39(11): 125
罗宗强, 辛保亮, 张卫文 等. pH值对Cu-17Ni-3Al-X耐磨铸造铜合金腐蚀的影响 [J]. 华南理工大学学报(自然科学版), 2011, 39(11): 125
doi: 1000-565X (21000-565X (2011) 11-0125-07
5 Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: Influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
6 Chen H L, Ma L, Huang G S, et al. Effects of pH value, temperature and salinity on film formation of B30 Cu-Ni alloy in seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 481
陈翰林, 马 力, 黄国胜 等. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 481
doi: 10.11902/1005.4537.2022.199
7 Du L L, Zhang G T, Wei L, et al. Inhomogeneous phases in Cu-Zn-Al-Fe-Mn and the micro-galvanic coupling in 3.5wt%NaCl solutions at different pH [J]. Corros. Sci., 2022, 195: 110005
8 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens [S]. Beijing: Standards Press of China, 2016
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016
9 Iqbal J, Hasan F, Ahmad F. Characterization of phases in an as-cast copper-manganese-aluminum alloy [J]. J. Mater. Sci. Technol., 2006, 22: 779
10 Yi X N, Ma A L, Zheng Y G, et al. Elucidating different selective corrosion behavior of two typical marine aluminum bronze alloys from the perspective of constituent phases [J]. Corros. Sci., 2024, 235: 112167
11 Hasan F, Jahanafrooz A, Lorimer G W, et al. The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze [J]. Metall. Trans., 1982, 13A: 1337
12 Song Q N, Li H L, Xu N, et al. Selective phase corrosion and cavitation erosion behaviors of various copper alloys in 3.5%NaCl solutions with different pH values [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 3039
13 Song Q N, Zheng Y G, Ni D R, et al. Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media [J]. Corros. Sci., 2015, 92: 95
14 Amegroud H, Guenbour A, Bellaouchou A, et al. A comprehensive investigation of the electrochemical behavior of nickel-aluminum bronze alloy in alkaline solution: The effect of film formation potential [J]. Colloids Surf., 2021, 614A: 126126
15 Wharton J A, Barik R C, Kear G, et al. The corrosion of nickel-aluminium bronze in seawater [J]. Corros. Sci., 2005, 47: 3336
16 Zhang C D, Liu B, Shi Z Y, et al. Research progress in corrosion behavior of nickel aluminum bronze alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 25
张赪栋, 刘 斌, 石泽耀 等. 镍铝青铜合金海水腐蚀行为研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 25
doi: 10.11902/1005.4537.2020.221
17 Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
18 Ding Y, Zhao R, Qin Z B, et al. Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5wt%NaCl solution [J]. Materials, 2019, 12: 209
19 Nakhaie D, Davoodi A, Imani A. The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS, AFM and SKPFM [J]. Corros. Sci., 2014, 80: 104
20 Lv Y T, Guo J W, Zhang G S, et al. Insights into the selective phase corrosion of as cast NiAl bronze alloy: Effect of electrical properties of each phase's protective film [J]. J. Alloy. Compd., 2022, 891: 162008
21 Culpan E A, Rose G. Corrosion behaviour of cast nickel aluminium bronze in sea water [J]. Br. Corros. J., 1979, 14: 160
22 Gudić S, Vrsalović L, Radeljić A, et al. Comparison of corrosion behaviour of copper and copper alloys in aqueous chloride solution [J]. Chem. Ind. Chem. Eng. Quart., 2021, 27: 383
23 Wang W Y, Zhang W J, Liu Y F, et al. Tailoring microstructure of a nickel aluminium bronze by hot extrusion and its impact on mechanical and corrosion behaviour [J]. Corros. Sci., 2023, 215: 111049
24 Asgari M, Foratirad H, Golabadi M, et al. Investigation of the corrosion behavior of aluminum bronze alloy in alkaline environment [J]. Materialwiss. Werkstofftech., 2021, 52: 511
[1] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[2] MIAO Hao, YIN Chenghui, WANG Honglun, GAO Yihui, CHEN Junhang, ZHANG Hao, LI Bo, WU Junsheng, XIAO Kui. Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[3] JIANG Huifang, LIU Yanghao, LIU Ying, LI Yingchao, YU Haobo, ZHAO Bo, CHEN Xi. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[4] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[5] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[6] LEI Aijia, DAI Xun, XU Jiangtao, DENG Ruiju, HUANG Xuefei. Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[7] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[8] ZHENG Wenpei, LIU Yingzheng, ZHANG Yaru, ZHOU Taotao, LI Xingtao, YU Shengyang, JIANG Lumeng. An Integrated Corrosion Rate Prediction Model Based on Global and Local Error Fusion: A Robust Optimization Strategy[J]. 中国腐蚀与防护学报, 2025, 45(2): 523-532.
[9] BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[10] CUI Dechun, XIONG Liang, YU Bangting, WU Haozhi, DONG Shaohua, CHEN Lin. Finite Element Analysis of Local Hydrogen Concentration in Hydrogen Pipeline With Corrosion Defects[J]. 中国腐蚀与防护学报, 2025, 45(2): 359-370.
[11] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[12] TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[13] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[14] MA Hongyu, LIU Rui, CUI Yu, KE Peiling, LIU Li, WANG Fuhui. Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[15] YANG Xiaodong, LI Xue, YU Zheng, YANG Shasha, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.
No Suggested Reading articles found!