Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 515-522    DOI: 10.11902/1005.4537.2024.213
Current Issue | Archive | Adv Search |
Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints
ZHAI Xiwei1,2(), LIU Shiyi2, WANG Li1, JIA Ruiling1,2, ZHANG Huixia3
1.School of Mechatronics Engineering, Zhongshan Polytechnic, Zhongshan 528400, China
2.School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
3.National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 515-522.

Download:  HTML  PDF(10580KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of 5383 Al-alloy and its welded joints was investigated in a nature seawater by applied different loads (50%Rel, 80%Rel, 100%Rel). Its stress corrosion behavior was assessed via a four-point bending device by applied constant load and electrochemical measurement. The results showed that the bare 5383 Al-alloy exhibited obvious passivation phenomenon, while no passivation for the welded joints. When the applied load was lower than the yield strength, the charge transfer resistance (Rct) of the welded joints decreased by an order of magnitude compared to that without applied load. When the applied load was equal to the yield strength, Rct decreased by two orders of magnitude. This is because when the load is increased up to the level of yield strength, not only the microstructure and stress state of the alloy are changed, but the surface passivation film is also difficult to form. Therefore, due to losing the protective effect of the passivation film, the corrosion may gradually propagate inward to the interior, resulting in an increase in the corrosion rate of welded joints of 5383 Al-alloy.

Key words:  corrosion behavior      Al-alloy      welded joint      passivation film     
Received:  17 July 2024      32134.14.1005.4537.2024.213
TG172  
Fund: Special Project in Key Fields of Universities in Guangdong Province(2024ZDZX3070);High-level Talent Research Project of Zhongshan Polytechnic(KYG2201)
Corresponding Authors:  ZHAI Xiwei, E-mail: xiweizhai@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.213     OR     https://www.jcscp.org/EN/Y2025/V45/I2/515

MaterialMgSiFeCuMnZnTiCrZrBeAl
Base metal4.000.250.250.200.700.150.150.150.25-Bal.
Filler metal4.300.400.400.100.500.250.150.25-0.0003Bal.
Table 1  Chemical compositions of 5383 aluminum alloy and 5183 filler metal
Fig.1  Schematic of four point bending loading
Fig.2  Nyquist (a), impedance module (b) and phase angle (c) plots of 5383 aluminum alloy welded joint under different stresses
Fig.3  Equivalent circuit diagram of EIS measurement for 5383 aluminum alloy welded joint under different applied loads
Applied load / MPaRs / Ω·cm2Qf / F·cm-2nfRf / Ω·cm2Qdl / F·cm-2nctRct / Ω·cm2
09.6882.024 × 10-60.90976.742 × 1042.451 × 10-511.429 × 105
50%Rel12.859.872 × 10-60.87394.379 × 1045.689 × 10-514.851 × 104
80%Rel10.041.673 × 10-50.85102.183 × 1041.372 × 10-412.028 × 104
100%Rel10.263.438 × 10-50.77381.225 × 1044.174 × 10-414.511 × 103
Table 2  Fitting results of EIS of 5383 aluminum alloy welded joint under different applied loads
Fig.4  Polarization curves of the base metal (a) and welded joint (b) of 5383 aluminum alloy under different applied loads
Applied load / MPaEcorr / VEtp / V
Base metalWelded jointsBase metal
50%Rel-0.71902-0.67978-0.60707
80%Rel-0.72407-0.68400-0.63579
100%Rel-0.71304-0.70102-0.66440
Table 3  Fitting results of polarization curves of the base metal and welded joint for 5383 aluminum alloy under different applied loads
Fig.5  Staged polarization curves of 5383 aluminum alloy samples under 50%Rel applied load: (a) not entering the passivation zone (Sample 1), (b) not entering the passivation zone (Sample 2), (c) before rapid increase in current after reaching the pitting potential (Sample 3), (d) including the whole zone (Sample 4)
Fig.6  Surface morphology of Sample 1 after polarization and EDS line scannings of Al and O
Fig.7  SEM images of two different surface regions (a, b) of Sample 2 after polarization test
Fig.8  Surface morphology of Sample 3 after polarization (a) and EDS line scannings of Al and O (b)
Fig.9  Surface morphology of Sample 4 after polarization (a) and EDS line scannings of Al and O (b)
Fig.10  Surface Mott-Schottky curves of 5383 aluminum alloy under different applied loads
Fig.11  Efb and Na values of the passivation films formed on 5383 aluminum alloy under different applied loads
1 Wang H. Corrosion behavior of marine 5383 aluminum alloy in simulated seawater [D]. Ningxia: Ningxia University, 2015
王 恒. 船用5383铝合金在模拟海水中的腐蚀行为研究 [D]. 宁夏: 宁夏大学, 2015
2 Xu X L, Chen H, Li P, et al. Corrosion fatigue crack initiation behavior of A7N01S-T5 aluminum alloy welding metal [J]. Electr. Weld. Mach., 2015, 45(10): 50
徐晓龙, 陈 辉, 李 鹏 等. A7N01S-T5铝合金焊缝金属腐蚀疲劳裂纹萌生行为 [J]. 电焊机, 2015, 45(10): 50
3 Li P R, Fan Q B, Zhu X J, et al. Study of high-speed-impact-induced conoidal fracture of Ti alloy layer in composite armor plate composed of Ti- and Al-alloy layers [J]. Def. Technol., 2021, 17: 1434
doi: 10.1016/j.dt.2020.07.010
4 Chen W J. Study on the corrosion behavior and electrochemical behavior of high-strength aluminum alloy under stress conditions [D]. Changsha: Central South University, 2008
陈文敬. 高强铝合金应力条件下的腐蚀行为及其电化学行为研究 [D]. 长沙: 中南大学, 2008
5 Fujii T, Ito D, Shimamura Y. Growth characteristics of stress corrosion cracking in high-strength 7075 aluminum alloy in sodium chloride solutions [J]. Eng. Fract. Mech., 2023, 292: 109657
6 Xiong Y D, Robson J D, Cao Z J, et al. Mitigation effects of over-aging (T73) induced intergranular corrosion on stress corrosion cracking of AA7075 aluminum alloy and behaviors of η phase grain boundary precipitates during the intergranular corrosion formation [J]. Corros. Sci., 2023, 225: 111570
7 Wang M T, Wang L W, Pang K, et al. Understanding stress corrosion cracking behavior of 7085-T7651 aluminum alloy in polluted atmosphere [J]. Chin. J. Aeronaut., 2023, 36: 408
8 Zhou B, Yang L, Yang S B, et al. Stress corrosion behavior of 6082 aluminum alloy [J]. Mater. Corros., 2020, 71: 1194
doi: 10.1002/maco.201911433
9 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
10 Yu M, Wei X D, Fan S Y, et al. Corrosion behavior of 2297 Al-Li alloy under tensile load [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 439
于 美, 魏新帝, 范世洋 等. 应力作用下2297铝锂合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 439
11 Zhang E S, Guo D X, Wang Y C, et al. Mechanical properties degradation of aluminum alloys under corrosion environment [J]. Ordnance Mater. Sci. Eng., 2014, 37(5): 23
张恩山, 郭东旭, 王燕昌 等. 腐蚀环境中铝合金材料力学性能退化研究 [J]. 兵器材料科学与工程, 2014, 37(5): 23
12 Zhang H, Sun D T, Zhang H, et al. Progress in corrosion behavior of friction stir welded aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 175
张 华, 孙大同, 张 贺 等. 铝合金搅拌摩擦焊接接头腐蚀行为研究进展 [J]. 中国腐蚀与防护学报 2013, 33: 175
13 Cabrini M, Bocchi S, D'Urso G, et al. Effect of load on the corrosion behavior of friction stir welded AA7075-T6 aluminum alloy [J]. Materials, 2020, 13: 2600
14 Qi X, Jiang B, Song R G. Effects of ageing treatment on corrosion behavior of 7075 aluminum alloy coated by micro arc oxidation (MAO) [J]. Corros. Sci., 2022, 199: 110164
15 Chen C F, Baart B V, Zhang J Q, et al. Polystyrene/TiO2 nanocomposite coating for strength and toughness enhancement of aluminum alloy 2024-T3 in accelerated stress corrosion cracking [J]. Prog. Org. Coat., 2021, 161: 106458
16 Lü X D. Stress corrosion behavior of high-strength and high-magnesium aluminum alloys under constant strain conditions in seawater [D]. Changsha: Beijing University of Chemical Technology, 2022
吕晓丹. 船用高强高镁铝合金在模拟海水中恒应变条件下应力腐蚀行为研究 [D]. 长沙: 北京化工大学, 2022
17 Sun Q, Wang H J, Yu S, et al. Reducing stress corrosion cracking susceptibility of high-strength aluminum alloy and its fastener by a novel electromagnetic shocking treatment [J]. J. Alloy. Compd., 2023, 960: 170917
18 Wang M T, Wang L W, Yang W D, et al. Study on the roles of bisulfite in the stress corrosion cracking of 7050-T7451 aluminum alloy in the thin electrolyte layer environment [J]. Corros. Sci., 2023, 215: 111030
19 Wang J T, Chen J W, Zhang Y K, et al. Influence of ultrasonic impact treatment on stress corrosion of 7075 aluminum alloy and its welded joints [J]. Eng. Fail. Anal., 2023, 144: 106908
20 Ren J P, Song R G. Effect of two-stage ageing on mechanical properties and sensitivity to hydrogen embrittlement of 7050 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 359
任建平, 宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 359
doi: 10.11902/1005.4537.2018.160
21 Pan Y Z, Wang Y, Guo F Q, et al. Stress corrosion behavior of friction stir welding joint of 7N01 aluminum alloy [J]. J. Mater. Res. Technol., 2021, 15: 1130
22 Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation [J]. Corros. Sci., 2018, 132: 146
23 Peng F G, Deng R. Mott-Schottky curve analysis of stainless steel nano coating under chlorine environment [J]. J. Jiujiang Vocat. Tech. Coll., 2016, (1): 67
彭福官, 邓 锐. 不锈钢纳米涂层含氯环境下Mott-Schottky曲线分析 [J]. 九江职业技术学院学报, 2016, (1): 67
[1] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[2] XU Jingxiang, HUANG Ruiyang, CHU Zhenhua, JIANG Quantong. Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[3] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[4] WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[5] SHI Xianfei, CHEN Xiaohua, MAN Cheng. Natural Passivation Behavior and Corrosion Resistance of HRB400 Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[6] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[7] FAN Zhibin, GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai. Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[8] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[9] YANG Haiyun, LIU Chunquan, XIONG Fen, CHEN Minna, XIE Yuelin, PENG Longsheng, SUN Sheng, LIU Haizhou. Research Progress on Preparation of Corrosion-resistant Coatings by Extreme High-speed Laser Material Deposition[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[10] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[11] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[12] WANG Yuxue, ZHU Aohong, WANG Liwei, CUI Zhongyu. Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[13] WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[14] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[15] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
No Suggested Reading articles found!