Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 115-126    DOI: 10.11902/1005.4537.2024.134
Current Issue | Archive | Adv Search |
Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy
HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan(), WANG Qiwei
School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
Cite this article: 

HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 115-126.

Download:  HTML  PDF(30416KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eutectic high-entropy alloy, YHf-AlCoCrFeNi2.1 (YHf-EHEA) was prepared using vacuum arc melting, and then the YHf-EHEA was surface modified via Pt electroplating and followed by a diffusion treatment at 1080 oC also in vacuum, then after, the Pt-modified alloy maned as YHfPtAlCoCrFeNi2.1 (YHfPt-EHEA). Afterwards, the hot corrosion behavior of the two EHEAs in mixed salts Na2SO4/K2SO4 (mass fraction 75%:25%) at 800 oC and Na2SO4/NaCl (mass fraction 75%:25%) at 900 oC respectively was assessed by means of XRD, SEM and EPMA. The results indicate that the oxide scale formed on YHf-EHEA peeled off in a large area due to hot corrosion in Na2SO4/K2SO4 at 800 oC, while the oxide scale formed on YHfPt-EHEA remains intact and continuous in the same hot corrosion situation. During hot corrosion in Na2SO4/NaCl mixed salt at 900 oC, O and S diffuse rapidly into YHf-EHEA and form a number of oxides and sulfides within the alloy, which accelerate the cracking and peeling behavior of oxide scale. In contrast, after being Pt-modified the YHfPt-EHEA exhibits significant inhibition effect to the inward diffusion of O and S into the alloy, and therewith suppresses the hot corrosion process.

Key words:  hot corrosion      eutectic high-entropy alloys      reactive element      Pt modification     
Received:  24 April 2024      32134.14.1005.4537.2024.134
ZTFLH:  TG174  
Fund: Basic and Applied Basic Research Foundation of Guangzhou(202201010206)
Corresponding Authors:  REN Pan, E-mail: renpan@jnu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.134     OR     https://www.jcscp.org/EN/Y2025/V45/I1/115

Fig.1  Microstructure and composition analysises of YHf-EHEA and YHfPt-EHEA samples: (a) SEM morphology of YHf-EHEA after melting, (b) surface morphology of YHfPt-EHEA electroplated with Pt, (c) cross-sectional morphology of YHfPt-EHEA after vacuum annealing, (d) XRD patterns of two alloys, (e) elemental linear distributions of YHfPt-EHEA after annealing at 1080 oC for 3 h
Fig.2  Mass change curves (a) and XRD patterns (b) of two EHEA samples during hot corrosion for 200 h in mixed salt (Na2SO4 + K2SO4) at 800 oC
Fig.3  Surface morphologies of YHf-EHEA (a, b) and YHfPt-EHEA (c, d) after hot corrosion for 200 h in mixed salt (Na2SO4 + K2SO4) at 800 oC
Fig.4  Cross-sectional morphologies of YHf-EHEA (a, b) and YHfPt-EHEA (c, d) after hot corrosion for 200 h in mixed salt (Na2SO4 + K2SO4) at 800 oC
Fig.5  Distributions of main elements on the cross-sections of YHf-EHEA (a) and YHfPt-EHEA (b) after hot corrosion for 200 h at 800 oC in mixed salt (Na2SO4 + K2SO4)
Fig.6  XRD patterns of YHf-EHEA and YHfPt-EHEA after hot corrosion for 20 h in mixed salt (Na2SO4 +NaCl) at 900 oC
Fig.7  Macroscopic morphologies of YHf-EHEA (a, b) and YHfPt-EHEA (c, d) after hot corrosion in mixed salt (Na2SO4 + NaCl) at 900 oC for 0 h (a, c) and 20 h (b, d)
Fig.8  Micro morphologies of oxide scales formed on YHf-EHEA (a, b) and YHfPt-EHEA (c, d) two after hot corrosion for 20 h in mixed salt (Na2SO4 + NaCl) at 900 oC
Fig.9  Cross-sectional morphologies of YHf-EHEA (a, b) and YHfPt-EHEA (c, d) after hot corrosion for 20 h in mixed salt (Na2SO4 + NaCl) at 900 oC
Fig.10  Distributions of main elements on the cross-sections of YHf-EHEA (a) and YHfPt-EHEA (b) after hot corrosion for 20 h at 900 oC in mixed salt (Na2SO4 + NaCl)
Fig.11  Macro-morphologies of YHf-EHEA (a) and YHfPt-EHEA (b, c) after 100 h of hot corrosion in the mixed salt (Na2SO4 +NaCl) at 900 oC
Fig.12  Schematic diagrams of hot corrosion mechanisms of two EHEAs at 800 oC (a) and 900 oC (b)
1 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
3 Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
4 Miao J W, Liang H, Zhang A J, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces [J]. Tribol. Int., 2021, 153: 106599
5 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys [J]. Scr. Mater., 2020, 187: 202
6 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
7 Rahul M R, Samal S, Venugopal S, et al. Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Alloy. Compd., 2018, 749: 1115
8 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
9 Min S L, Liu H, Wang J Q, et al. Early oxidation behavior of Ni-based Alloy 690 in simulated pressurized water reactor environment with varying surface conditions [J]. Corros. Commun., 2021, 4: 68
10 Song L F, Hu W B, Liao B K, et al. Corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in Cl--containing solution [J]. J. Alloy. Compd., 2023, 938: 168609
11 Zhang L, Ji Y, Yang B. Thermal stability and hot corrosion performance of the AlCoCrFeNi2.1 high-entropy alloy coating by laser cladding [J]. Materials, 2023, 16: 5747
12 Yang Y F, Ren P, Bao Z B, et al. Microstructure and cyclic oxidation of a Hf-doped (Ni, Pt)Al coating for single-crystal superalloys [J]. J. Mater. Sci., 2020, 55: 11687
13 Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 oC [J]. Corros. Sci., 2013, 66: 125
14 Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC [J]. Corros. Sci., 2021, 180: 109191
15 Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
16 Zhao C S, Zhuo Y H, Zou Z H, et al. Effect of alloyed Lu, Hf and Cr on the oxidation and spallation behavior of NiAl [J]. Corros. Sci., 2017, 126: 334
17 Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200oC [J]. Corros. Sci., 2014, 88: 197
18 Bai H, Su C, Xie Y, et al. High temperature corrosion of laser additively manufactured CoNiCrAlY [J]. Corros. Commun., 2022, 7: 35
19 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: in memory of John Stringer [J]. Oxid. Met., 2016, 86: 1
20 Zhang J L, Fu G Y, Ning L K, et al. Research on hot corrosion behavior of nickel based single crystal high temperature alloy in different heat treatment states [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625
doi: 10.11902/1005.4537.2024.027
21 Zhang Y S. Fluxing mechanism of hot corrosion and its limitation [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 1
张允书. 热腐蚀的盐溶机理及其局限性 [J]. 中国腐蚀与防护学报, 1992, 12: 1
22 Peng J B, Huang T H, Song P, et al. Effect of platinum and pre-oxidation on the hot corrosion behavior of aluminide coating with NaCl at 1050 oC [J]. Mater. Res. Express, 2020, 7: 116402
23 Sun J, Liu S B, Li W, et al. Hot corrosion behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2019, 149: 207
doi: 10.1016/j.corsci.2019.01.014
24 Yang Y F, Yao H R, Bao Z B, et al. Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
doi: 10.1016/j.jmst.2018.09.039
25 Xiao Q, Huang Q Y, Yang L L, et al. The cyclic oxidation behavior of a Pt modified γ' nanocrystalline coating at 1150 oC [J]. Corros. Sci., 2022, 208: 110638
26 Li C, Song P, Feng J, et al. Alumina growth behaviour on the surface-modified NiCoCrAl alloy by Pt and Hf at high temperature [J]. Appl. Surf. Sci., 2019, 479: 1178
27 Simms N J, Encinas-Oropesa A, Nicholls J R. Hot corrosion of coated and uncoated single crystal gas turbine materials [J]. Mater. Corros., 2008, 59: 476
28 Qiu P P, Shu X Y, Hu L L, et al. Research progress of Pt-modified aluminide coating on nickel-base superalloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 186
邱盼盼, 舒小勇, 胡林丽 等. Pt改性镍基高温合金铝化物涂层研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 186
doi: 10.11902/1005.4537.2021.042
29 Zhao X Y, Guo H B, Gao Y Z, et al. Effects of dy on transient oxidation behavior of EB-PVD β-NiAl coatings at elevated temperatures [J]. Chin. J. Aeronaut., 2011, 24: 363
30 Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
31 Liu R D, Jiang S M, Yu H J, et al. Preparation and hot corrosion behaviour of Pt modified AlSiY coating on a Ni-based superalloy [J]. Corros. Sci., 2016, 104: 162
32 Chen H, Ma G, Yang G J. A study on microstructures and properties of internal oxidation Ag-Mg-Ni alloy [J]. J. Xi'an Univ. Arts Sci. (Nat. Sci. Ed.), 2012, 15(2): 62
陈 昊, 马 光, 杨冠军. 内氧化Ag-Mg-Ni合金的组织性能研究 [J]. 西安文理学院学报(自然科学版), 2012, 15(2): 62
33 Felten E J. Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys [J]. Oxid. Met., 1976, 10: 23
34 Lai H, Knutsson P, Stiller K. The influence of platinum on the oxidation and sodium sulfate induced hot corrosion of NiAl diffusion coatings [J]. Mater. High Temp., 2011, 28: 302
35 Yang B, Li M D, Liu G M, et al. Hot corrosion behavior of inconel 625/NiCr coating prepared by HOVF [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 483
杨 波, 李茂东, 刘光明 等. 超音速喷涂Inconel 625/NiCr合金涂层的热腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 483
36 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
37 Antunes R A, de Oliveira M C L. Corrosion in biomass combustion: a materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies [J]. Corros. Sci., 2013, 76: 6
38 Mohanty B P, Shores D A. Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I: Experimental studies [J]. Corros. Sci., 2004, 46: 2893
39 Chen L, Zhang X Z, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding [J]. Corros. Sci., 2022, 201: 110271
40 Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
41 Deodeshmukh V, Gleeson B. Effects of platinum on the hot corrosion behavior of Hf-modified γ′-Ni3Al + γ-Ni-based alloys [J]. Oxid. Met., 2011, 76: 43
42 Liu H, Li S, Jiang C Y, et al. Oxidation performance and interdiffusion behavior of a Pt-modified aluminide coating with pre-deposition of Ni [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1490
43 Yang Y F, Ren S X, Ren P, et al. Hot corrosion and cyclic oxidation performance of a PtAl2-dispersed (Ni, Pt)Al coating prepared by low-activity high-temperature aluminizing [J]. J. Alloy. Compd., 2022, 911: 164978
[1] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[2] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[3] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[4] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[5] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[6] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[7] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[8] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[9] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[10] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[11] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[12] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[13] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[14] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[15] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
No Suggested Reading articles found!