|
|
Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy |
HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan( ), WANG Qiwei |
School of Chemistry and Materials, Jinan University, Guangzhou 510632, China |
|
Cite this article:
HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 115-126.
|
Abstract Eutectic high-entropy alloy, YHf-AlCoCrFeNi2.1 (YHf-EHEA) was prepared using vacuum arc melting, and then the YHf-EHEA was surface modified via Pt electroplating and followed by a diffusion treatment at 1080 oC also in vacuum, then after, the Pt-modified alloy maned as YHfPtAlCoCrFeNi2.1 (YHfPt-EHEA). Afterwards, the hot corrosion behavior of the two EHEAs in mixed salts Na2SO4/K2SO4 (mass fraction 75%:25%) at 800 oC and Na2SO4/NaCl (mass fraction 75%:25%) at 900 oC respectively was assessed by means of XRD, SEM and EPMA. The results indicate that the oxide scale formed on YHf-EHEA peeled off in a large area due to hot corrosion in Na2SO4/K2SO4 at 800 oC, while the oxide scale formed on YHfPt-EHEA remains intact and continuous in the same hot corrosion situation. During hot corrosion in Na2SO4/NaCl mixed salt at 900 oC, O and S diffuse rapidly into YHf-EHEA and form a number of oxides and sulfides within the alloy, which accelerate the cracking and peeling behavior of oxide scale. In contrast, after being Pt-modified the YHfPt-EHEA exhibits significant inhibition effect to the inward diffusion of O and S into the alloy, and therewith suppresses the hot corrosion process.
|
Received: 24 April 2024
32134.14.1005.4537.2024.134
|
|
Fund: Basic and Applied Basic Research Foundation of Guangzhou(202201010206) |
Corresponding Authors:
REN Pan, E-mail: renpan@jnu.edu.cn
|
1 |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
|
2 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
3 |
Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
|
4 |
Miao J W, Liang H, Zhang A J, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces [J]. Tribol. Int., 2021, 153: 106599
|
5 |
Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys [J]. Scr. Mater., 2020, 187: 202
|
6 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
7 |
Rahul M R, Samal S, Venugopal S, et al. Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Alloy. Compd., 2018, 749: 1115
|
8 |
Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
|
9 |
Min S L, Liu H, Wang J Q, et al. Early oxidation behavior of Ni-based Alloy 690 in simulated pressurized water reactor environment with varying surface conditions [J]. Corros. Commun., 2021, 4: 68
|
10 |
Song L F, Hu W B, Liao B K, et al. Corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in Cl--containing solution [J]. J. Alloy. Compd., 2023, 938: 168609
|
11 |
Zhang L, Ji Y, Yang B. Thermal stability and hot corrosion performance of the AlCoCrFeNi2.1 high-entropy alloy coating by laser cladding [J]. Materials, 2023, 16: 5747
|
12 |
Yang Y F, Ren P, Bao Z B, et al. Microstructure and cyclic oxidation of a Hf-doped (Ni, Pt)Al coating for single-crystal superalloys [J]. J. Mater. Sci., 2020, 55: 11687
|
13 |
Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 oC [J]. Corros. Sci., 2013, 66: 125
|
14 |
Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC [J]. Corros. Sci., 2021, 180: 109191
|
15 |
Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
|
16 |
Zhao C S, Zhuo Y H, Zou Z H, et al. Effect of alloyed Lu, Hf and Cr on the oxidation and spallation behavior of NiAl [J]. Corros. Sci., 2017, 126: 334
|
17 |
Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200oC [J]. Corros. Sci., 2014, 88: 197
|
18 |
Bai H, Su C, Xie Y, et al. High temperature corrosion of laser additively manufactured CoNiCrAlY [J]. Corros. Commun., 2022, 7: 35
|
19 |
Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: in memory of John Stringer [J]. Oxid. Met., 2016, 86: 1
|
20 |
Zhang J L, Fu G Y, Ning L K, et al. Research on hot corrosion behavior of nickel based single crystal high temperature alloy in different heat treatment states [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
|
|
张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625
doi: 10.11902/1005.4537.2024.027
|
21 |
Zhang Y S. Fluxing mechanism of hot corrosion and its limitation [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 1
|
|
张允书. 热腐蚀的盐溶机理及其局限性 [J]. 中国腐蚀与防护学报, 1992, 12: 1
|
22 |
Peng J B, Huang T H, Song P, et al. Effect of platinum and pre-oxidation on the hot corrosion behavior of aluminide coating with NaCl at 1050 oC [J]. Mater. Res. Express, 2020, 7: 116402
|
23 |
Sun J, Liu S B, Li W, et al. Hot corrosion behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2019, 149: 207
doi: 10.1016/j.corsci.2019.01.014
|
24 |
Yang Y F, Yao H R, Bao Z B, et al. Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
doi: 10.1016/j.jmst.2018.09.039
|
25 |
Xiao Q, Huang Q Y, Yang L L, et al. The cyclic oxidation behavior of a Pt modified γ' nanocrystalline coating at 1150 oC [J]. Corros. Sci., 2022, 208: 110638
|
26 |
Li C, Song P, Feng J, et al. Alumina growth behaviour on the surface-modified NiCoCrAl alloy by Pt and Hf at high temperature [J]. Appl. Surf. Sci., 2019, 479: 1178
|
27 |
Simms N J, Encinas-Oropesa A, Nicholls J R. Hot corrosion of coated and uncoated single crystal gas turbine materials [J]. Mater. Corros., 2008, 59: 476
|
28 |
Qiu P P, Shu X Y, Hu L L, et al. Research progress of Pt-modified aluminide coating on nickel-base superalloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 186
|
|
邱盼盼, 舒小勇, 胡林丽 等. Pt改性镍基高温合金铝化物涂层研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 186
doi: 10.11902/1005.4537.2021.042
|
29 |
Zhao X Y, Guo H B, Gao Y Z, et al. Effects of dy on transient oxidation behavior of EB-PVD β-NiAl coatings at elevated temperatures [J]. Chin. J. Aeronaut., 2011, 24: 363
|
30 |
Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
|
31 |
Liu R D, Jiang S M, Yu H J, et al. Preparation and hot corrosion behaviour of Pt modified AlSiY coating on a Ni-based superalloy [J]. Corros. Sci., 2016, 104: 162
|
32 |
Chen H, Ma G, Yang G J. A study on microstructures and properties of internal oxidation Ag-Mg-Ni alloy [J]. J. Xi'an Univ. Arts Sci. (Nat. Sci. Ed.), 2012, 15(2): 62
|
|
陈 昊, 马 光, 杨冠军. 内氧化Ag-Mg-Ni合金的组织性能研究 [J]. 西安文理学院学报(自然科学版), 2012, 15(2): 62
|
33 |
Felten E J. Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys [J]. Oxid. Met., 1976, 10: 23
|
34 |
Lai H, Knutsson P, Stiller K. The influence of platinum on the oxidation and sodium sulfate induced hot corrosion of NiAl diffusion coatings [J]. Mater. High Temp., 2011, 28: 302
|
35 |
Yang B, Li M D, Liu G M, et al. Hot corrosion behavior of inconel 625/NiCr coating prepared by HOVF [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 483
|
|
杨 波, 李茂东, 刘光明 等. 超音速喷涂Inconel 625/NiCr合金涂层的热腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 483
|
36 |
Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
|
|
伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
|
37 |
Antunes R A, de Oliveira M C L. Corrosion in biomass combustion: a materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies [J]. Corros. Sci., 2013, 76: 6
|
38 |
Mohanty B P, Shores D A. Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I: Experimental studies [J]. Corros. Sci., 2004, 46: 2893
|
39 |
Chen L, Zhang X Z, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding [J]. Corros. Sci., 2022, 201: 110271
|
40 |
Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
|
41 |
Deodeshmukh V, Gleeson B. Effects of platinum on the hot corrosion behavior of Hf-modified γ′-Ni3Al + γ-Ni-based alloys [J]. Oxid. Met., 2011, 76: 43
|
42 |
Liu H, Li S, Jiang C Y, et al. Oxidation performance and interdiffusion behavior of a Pt-modified aluminide coating with pre-deposition of Ni [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1490
|
43 |
Yang Y F, Ren S X, Ren P, et al. Hot corrosion and cyclic oxidation performance of a PtAl2-dispersed (Ni, Pt)Al coating prepared by low-activity high-temperature aluminizing [J]. J. Alloy. Compd., 2022, 911: 164978
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|