Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 127-136    DOI: 10.11902/1005.4537.2024.029
Current Issue | Archive | Adv Search |
Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature
WANG Yue1, GENG Shujiang1(), WANG Jinlong1, WANG Fuhui1, SUN Qingyun2, WU Yong2, XIA Siyao2
1 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
2 Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China
Cite this article: 

WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 127-136.

Download:  HTML  PDF(28933KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminized coating was prepared on the surface of nickel-based superalloy K444 by chemical vapor deposition (CVD) technique. The corrosion behavior of K444 alloy without and with CVD aluminized coating beneath a thin deposits film of 95%Na2SO4 + 5%NaCl was studied in air at 850 and 950 oC. The results indicate that K444 alloy showed poor corrosion resistance after 10 h corrosion. A scale of loose mixed oxides was formed on its surface, of which the outer layer is mainly composed of Cr2O3 and TiO2, and the inner layer is Al2O3. With the increase of temperature, the corrosion was intensified and the spallation occurred of the corrosion products scale. In contrast, a protective Al2O3 scale was formed on the surface of the CVD aluminized coating, which effectively improves the corrosion resistance for the K444 alloy.

Key words:  nickel-based superalloy      hot corrosion      CVD aluminized coating     
Received:  17 January 2024      32134.14.1005.4537.2024.029
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2020YFB2010400);Hubei Provincial Key R&D Program of China(2021BAA210)
Corresponding Authors:  GENG Shujiang, E-mail: gengsj@smm.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.029     OR     https://www.jcscp.org/EN/Y2025/V45/I1/127

Fig.1  Surface morphology of CVD aluminized coating
Fig.2  SEM cross-sectional morphology with EDS elements mapping of CVD aluminized coating
Fig.3  XRD pattern of CVD aluminized coating
Fig.4  Corrosion kinetic curves of K444 alloy and CVD aluminized coatings with deposit of Na2SO4 + NaCl
Fig.5  Surface morphologies of K444 alloy (a, b) and CVD aluminized coating (c, d) with deposit of Na2SO4 + NaCl at 850 oC (a, c) and 950 oC (b, d) after 10 h corrosion
Fig.6  SEM cross-sectional morphologies with EDS elements mapping of K444 alloy (a) and CVD aluminized coating (b) with deposit of Na2SO4 + NaCl at 850 oC after 10 h corrosion
Fig.7  SEM cross-sectional morphology with EDS point analysis of K444 alloy with deposit of Na2SO4 + NaCl at 850 oC after 10 h corrosion
Fig.8  SEM cross-sectional morphologies with EDS elements mapping of K444 alloy (a) and CVD aluminized coating (b) with deposit of Na2SO4 + NaCl at 950 oC after 10 h corrosion
Fig.9  SEM cross-sectional morphology with EDS point analysis of K444 alloy with deposit of Na2SO4 + NaCl at 950 oC after 10 h corrosion
Fig.10  XRD patterns of K444 alloy (a) and CVD aluminized coating (b) with deposit of Na2SO4 + NaCl at 850 and 950 oC after 10 h corrosion
Fig.11  Simplified eutectic phase diagram of Na2SO4-NaCl system
Fig.12  Ellingham-Richardson diagram of oxidation reactions of metallic elements
Fig.13  Ellingham-Richardson diagram of the reactions between metallic elements and solid Na2SO4
Fig.14  Ellingham-Richardson diagram of the reactions between metallic elements and molten Na2SO4
Fig.15  Ellingham-Richardson diagram of the reactions between metallic elements and molten NaCl
Fig.16  Ellingham-Richardson diagram of the reactions between metal chloride and oxygen
1 Yuan Z W, Chang F C, Ma R, et al. Research progress of additive manufacturing of Nickel-based superalloys [J]. Mater. Rep., 2022, 36(3): 20090201
袁战伟, 常逢春, 马 瑞 等. 增材制造镍基高温合金研究进展 [J]. 材料导报, 2022, 36(3): 20090201
2 Wang H Y, An Y Q, Li C Y, et al. Research progress of Ni-based superalloys [J]. Mater. Rep., 2011, 25(S18): 482
王会阳, 安云岐, 李承宇 等. 镍基高温合金材料的研究进展 [J]. 材料导报, 2011, 25(专辑18) : 482
3 Zielińska M, Yavorska M, Poreba M, et al. Thermal properties of cast nickel based superalloys [J]. Arch. Mater. Sci. Eng., 2010, 44: 35
4 Cao J D, Gong S J, Zhong C G, et al. High temperature oxidation behavior of Co-Cr-Y2O3 modified aluminide coatings on Ni-based superalloy by pack cementation process [J]. Rare Met. Mater. Eng., 2018, 47: 3616
5 Guo Y A, Li B S, Lai W H, et al. Oxidation behavior of Ni-based superalloy K444 at 900 oC in air during long term [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 285
郭永安, 李柏松, 赖万慧 等. 铸造镍基合金K444在900 ℃空气中的长期氧化行为 [J]. 中国腐蚀与防护学报, 2012, 32: 285
6 Peng Z J, Yue X G, Zhang M J, et al. Effects of solution cooling rate on microstructure and mechanical properties of nickel base superalloy K444 [J]. Heat Treat. Met., 2015, 40(2): 163
彭志江, 乐献刚, 张明俊 等. 固溶冷却速率对镍基高温合金K444组织和力学性能的影响 [J]. 金属热处理, 2015, 40(2): 163
7 Guo J T, Zhou L Z, Yuan C, et al. Microstructure and properties of several originally invented and unique superalloys in China [J]. Chin. J. Nonferrous Met., 2011, 21: 237
郭建亭, 周兰章, 袁 超 等. 我国独创和独具特色的几种高温合金的组织和性能 [J]. 中国有色金属学报, 2011, 21: 237
8 Ye X, Tan J, Song H, et al. Study advances of blade tip coatings for aero-engine [J]. Mater. Prot., 2018, 51(2): 87
叶 雄, 谭 俊, 宋 晧 等. 航空发动机叶片叶尖涂层的研究进展 [J]. 材料保护, 2018, 51(2): 87
9 Zhang G Y, Zhang H, Zhang H A, et al. Progress in preparation and application of corrosive resistance coating for aerospace superalloys [J]. Mater. Rep., 2006, 20(5): 59
张光业, 张 华, 张厚安 等. 航空用高温合金防护涂层的研制及其应用的新进展 [J]. 材料导报, 2006, 20(5): 59
10 Li M S. High Temperature Corrosion of Metal [M]. Beijing: Beijing Industry Press, 2001
李美栓. 金属的高温腐蚀 [M]. 北京: 北京工业出版社, 2001
11 Wu D L, Jiang S M, Fan Q X, et al. Hot corrosion behavior of a Cr-Modified aluminide coating on a Ni-Based superalloy [J]. Acta Metall. Sin. Engl. Lett., 2014, 27: 627
12 Zhang L, Wu Y, Dun Y Z, et al. Preparation of aluminide coating on hollow-blade inner-cavity by CVD method [J]. Heat Treat. Met., 2019, 44(5): 124
张 磊, 吴 勇, 顿易章 等. 采用CVD法制备空心叶片内腔铝化物涂层 [J]. 金属热处理, 2019, 44(5): 124
13 Ciszak C, Abdallah I, Popa I, et al. Degradation mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si alloy exposed to solid NaCl deposit at high temperature [J]. Corros. Sci., 2020, 172: 108611
14 Li K, Zhang L, Wang G S. Vapor aluminizing process of gasturbine blade for aero-engine [J]. Heat Treat. Met., 2013, 38(9): 42
李 克, 张 莉, 王广生. 航空发动机涡轮叶片气相渗铝工艺 [J]. 金属热处理, 2013, 38(9): 42
15 Romanowska J. Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel [J]. Calphad, 2014, 44: 114
16 Zhang B W, Wu Y, Yang F, et al. The analogue design research of precursor gas flow field in the deposition chamber for aluminide coating device deposited by the CVD method [J]. Mater. Prot., 2021, 54(5): 1
张博闻, 吴 勇, 杨 甫 等. CVD法制备铝化物涂层装置沉积室内前驱体流场仿真设计研究 [J]. 材料保护, 2021, 54(5): 1
17 Dun Y Z. Research on high temperature properties of aluminide coating by CVD methods [D]. Beijing: China Academy of Machinery Science and Technology, 2018
顿易章. CVD法铝化物涂层高温性能研究 [D]. 北京: 机械科学研究总院, 2018
18 Zhang L, Wu Y, Xia S Y, et al. Hot corrosion behavior of platinum modified aluminide coatings deposited by chemical vapor deposition method [J]. Mater. Prot., 2020, 53(3): 1
张 磊, 吴 勇, 夏思瑶 等. CVD法Pt改性铝化物涂层的制备及其热腐蚀行为研究 [J]. 材料保护, 2020, 53(3): 1
19 Liu M K, Li Y M, Liu Y, et al. Hot corrosion behaviors test of DSM11 Ni-base superalloy under different temperature [J]. Aeroengine, 2023, 49(2): 168
刘明坤, 李艳明, 刘 宇 等. 不同温度下DSM11镍基高温合金热腐蚀试验 [J]. 航空发动机, 2023, 49(2): 168
20 Wang D, Wang D, Xie G, et al. Influence of Pt-Al coating on hot corrosion resistance behaviors of a Ni-Based single-crystal superalloy [J]. Acta Metall. Sin., 2021, 57: 780
doi: 10.11900/0412.1961.2020.00246
王 迪, 王 栋, 谢 光 等. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响 [J]. 金属学报, 2021, 57: 780
21 Zhang Y, Lee W Y, Haynes J A, et al. Synthesis and cyclic oxidation behavior of a (Ni, Pt) Al coating on a desulfurized Ni-base superalloy [J]. Metall. Mater. Trans., 1999, 30A: 2679
22 Liu S Y, Geng S J, Ma Y M, et al. Corrosion resistance of K444 alloy without and with CVD aluminized coatings beneath NaCl deposit in air at 750 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 321
刘姝妤, 耿树江, 马艺萌 等. K444合金表面CVD渗铝涂层在750 ℃空气中耐NaCl腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 321
doi: 10.11902/1005.4537.2022.129
23 Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
24 Luo K Y, Li S H, Xu G, et al. Hot corrosion behaviors of directed energy deposited Inconel 718/Haynes 25 functionally graded material at 700 oC and 900 oC [J]. Corros. Sci., 2022, 197: 110040
25 Aung N N, Liu X B. Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy-A high temperature electrochemical sensor study [J]. Corros. Sci., 2013, 76: 390
26 Sui J X, Lehmusto J, Bergelin M, et al. Initial oxidation mechanisms of stainless steel Sanicro 28 (35Fe27Cr31Ni) exposed to KCl, NaCl, and K2CO3 under dry and humid conditions at 535 oC [J]. Corros. Sci., 2019, 155: 29
[1] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[2] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[3] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[4] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[5] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[6] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[7] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[8] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[9] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[10] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[11] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[12] LIU Shuyu, GENG Shujiang, MA Yimeng, WANG Jinlong, WANG Fuhui. Corrosion Resistance of K444 Alloy without and with CVD Aluminized Coatings Beneath NaCl Deposit in Air at 750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[13] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[14] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[15] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
No Suggested Reading articles found!