|
|
Research Progress on CO2 Corrosion and Protective Countermeasures for Oil Casing |
YANG Tao1, XU Lei1( ), WANG Jianchun2, ZHANG Mingcheng1, YAO Yanbo1, GAO Guogang1, XU Wenzhong2, LI Changyun1 |
1 Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China 2 Xinjiang Defeng Yisheng Oil Anticorrosion Engineering Co., Ltd., Karamay 834000, China |
|
Cite this article:
YANG Tao, XU Lei, WANG Jianchun, ZHANG Mingcheng, YAO Yanbo, GAO Guogang, XU Wenzhong, LI Changyun. Research Progress on CO2 Corrosion and Protective Countermeasures for Oil Casing. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1134-1144.
|
Abstract With the popularization and application of CO2 flooding technology in oilfields, the CO2 corrosion and corrosion-control becomes an urgent problem to be solved. CO2 corrosion can easily cause the damage and failure of oil casing, and it is of great economic value and scientific significance to study the relevant corrosion mechanism and anti-corrosion measures. In this paper, the CO2 corrosion mechanism is introduced, and the influence of temperature, medium flow rate, pH and other factors on the CO2 corrosion rate is analyzed. By taking the actual operation conditions of oilfield exploitation and the influencing factors of CO2 corrosion into consideration, the research progress of corrosion-resistant materials, corrosion inhibitors, metal plating and other measures are reviewed, and the advantages and disadvantages of these measures in the actual oilfield application are summarized. Among many measures, the amorphous alloy coating is prone to be passivated passivated in operating conditions of oilfields, which may act as an effectively barrier to protect the pipe steel substrate from corrosion attack by corrosive media, thereby enhance the service life of the pipeline. The result of comprehensive analysis shows that the anti-corrosion measures of metal coating have good economic benefits and application prospects, and the future research on anti-corrosion technology of metal coating is prospected.
|
Received: 09 October 2023
32134.14.1005.4537.2023.318
|
|
Fund: Science and Technology Plan of Karamay(20232023hjcxrc0008);2023 Autonomous Region Graduate Innovation Project(XJ2023G281) |
Corresponding Authors:
XU Lei, E-mail: 2019592043@cupk.edu.cn
|
1 |
Zhang J T, Wang Z Y, Kang J N, et al. Several key issues for CCUS development in China targeting carbon neutrality [J]. Carb. Neutral., 2022, 1: 17
|
2 |
Zhao X H, He Z W, Liu J W, et al. Research status of CCUS corrosion control technology [J]. Pet. Tubular Goods Instrum., 2017, 3(3): 1
|
|
赵雪会, 何治武, 刘进文 等. CCUS腐蚀控制技术研究现状 [J]. 石油管材与仪器, 2017, 3(3): 1
|
3 |
Dunlop A K, Treseder R S. Pitting of carbon steel in sweet crude oil service [J]. Key Eng. Mater., 1988, 20-28: 2585
|
4 |
Wang D, Yuan S J, Wu X W, et al. Research progress of CO2/H2S corrosion in oil and gas pipelines and the protection techniques [J]. Surf. Technol., 2016, 45(3): 31
|
|
王 丹, 袁世娇, 吴小卫 等. 油气管道CO2/H2S腐蚀及防护技术研究进展 [J]. 表面技术, 2016, 45(3): 31
|
5 |
Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
|
|
侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
|
6 |
Yang G, Wang Y G, Jin X C, et al. The study of CO2 corrosion in oil-gas well [J]. Total Corros. Control, 2008, 22(5): 24
|
|
杨 光, 王亚刚, 金小春 等. 油气井二氧化碳腐蚀研究 [J]. 全面腐蚀控制, 2008, 22(5): 24
|
7 |
Chen Z Y, Zhang X Y, Wang F P, et al. The mechanism and influence factors of CO2 corrosion [J]. Dev. Appl. Mater., 1998, 13(5): 36
|
|
陈卓元, 张学元, 王凤平 等. 二氧化碳腐蚀机理及影响因素 [J]. 材料开发与应用, 1998, 13(5): 36
|
8 |
Zhang J S, Wu H B, Wang L D, et al. Effect of temperature on corrosion resistance of X80 pipeline steel [J]. Hot Work. Technol., 2012, 41(14): 19
|
|
张均生, 武会宾, 王立东 等. 温度对X80管线钢CO2腐蚀行为的影响 [J]. 热加工工艺, 2012, 41(14): 19
|
9 |
Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59: 616
|
10 |
Zhu S D, Yin Z F, Bai Z Q, et al. Influences of temperature on corrosion behavior of P110 steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 493
|
|
朱世东, 尹志福, 白真权 等. 温度对P110钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 493
|
11 |
Shi P F, Zou S J, Wu P J, et al. Analysis on corrosion factors of P110 in CO2 oil-water environment in Tahe oilfield [J]. Total Corros. Control, 2023, 37(5): 86
|
|
师朋飞, 邹思佳, 吴鹏举 等. 塔河油田P110套管CO2油水环境中的腐蚀影响因素分析 [J]. 全面腐蚀控制, 2023, 37(5): 86
|
12 |
Lin G F, Bai Z Q, Zhao X W, et al. Effect of temperature on scales of carbon dioxide corrosion products [J]. Acta Petrolei Sin., 2004, 25: 101, 109
|
|
林冠发, 白真权, 赵新伟 等. 温度对二氧化碳腐蚀产物膜形貌特征的影响 [J]. 石油学报, 2004, 25: 101, 109
|
13 |
Yan W, Deng J G, Dong X L, et al. Investigation of calculation method of CO2 partial pressure in oil and gas well [J]. Drill. Prod. Technol., 2011, 34(5): 19
|
|
闫 伟, 邓金根, 董星亮 等. 油气井CO2分压计算方法探讨 [J]. 钻采工艺, 2011, 34(5): 19
|
14 |
Wang J P, Cheng H. Generalized pH-Formula of CO2 and bicarbonate solution [A]. Proceedings of Academic Annual Meeting of China Nuclear Society in 2015 [C]. Mianyang: China Atomic Energy Press, 2015: 6
|
|
王坚朴, 成 弘. CO2~重碳酸盐溶液混合体系pH计算公式 [A]. 中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集第6册(核化学与放射化学分卷、核化工分卷) [C]. 绵阳: 中囯原子能出版社, 2015: 6
|
15 |
Li H, Yu H, Liu X Q, et al. Influences of CO2 partial pressure and salinity on corrosion of J55 steel tubing [J]. Corros. Prot., 2022, 43(10): 51, 62
|
|
李 辉, 于 海, 刘晓庆 等. CO2分压和矿化度对J55管材的腐蚀影响 [J]. 腐蚀与防护, 2022, 43(10): 51, 62
|
16 |
Fan D S, He C, Chen X, et al. Effects of CO2 partial pressure on corrosion behavior of 2205 duplex stainless steel in acid oil and gas field [J]. Hot Work. Technol., 2019, 48(24): 50
|
|
范东升, 何 川, 陈 旭 等. CO2分压力对2205双相不锈钢在酸性油气田中腐蚀行为的影响 [J]. 热加工工艺, 2019, 48(24): 50
|
17 |
Zhu S D, Li J L, Ma H X, et al. Effect of CO2 partial pressure on the characteristics of corrosion scale formed on J55 Tubing [J]. J. Xi'an Shiyou Univ. (Nat. Sci. Ed.), 2014, 29(2): 94, 103
|
|
朱世东, 李金灵, 马海霞 等. CO2分压对J55油管腐蚀产物膜特征的影响 [J]. 西安石油大学学报(自然科学版), 2014, 29(2): 94, 103
|
18 |
Zhu S D, Bai Z Q, Yin C X, et al. Behavior investigate of counter erosion-corrosion of P110 steel [J]. J. Mater. Eng., 2009, (8): 28
|
|
朱世东, 白真权, 尹成先 等. P110钢抗冲刷腐蚀行为研究 [J]. 材料工程, 2009, (8): 28
|
19 |
Revie R W. Uhlig's Corrosion Handbook [M]. John Wiley & Sons, 2001: 229
|
20 |
Cui G J, Gao K C, Wang X, et al. Study on corrosion law of deep well casing in CO2 environment [J]. Contemp. Chem. Ind., 2021, 50: 2923, 2933
|
|
崔国杰, 高科超, 王 啸 等. 深井套管在CO2环境中腐蚀规律研究 [J]. 当代化工, 2021, 50: 2923, 2933)
|
21 |
Dong J H, Nishimura T, Kodama T. Corrosion behavior of carbon steel in bicarbonate (HCO 3 - ) solutions [J]. MRS Online Proc. Library, 2001, 713: 141
|
22 |
Dong J H, Han E H, Ke W. Investigation on corrosion of mild steel in groundwater containing bicarbonate [A]. The Proceedings of Chinese Society for Rock Mechanics and Engineering Waste Underground Disposal Committee Established Symposium [C]. Beijing: Chinese Socity for Rock Mechanics & Engineering, 2006: 5
|
|
董俊华, 韩恩厚, 柯 伟. 低碳钢在含重碳酸盐地下水中的腐蚀研究 [A]. 中国岩石力学与工程学会废物地下处置专业委员会成立大会暨首届学术交流会 [C]. 北京: 中国岩石力学与工程学会, 2006: 5
|
23 |
Cheng H, Wang J P. Generalized pH-Formula of a bicarbonate solution [A]. Proceedings of Academic Annual Meeting of China Nuclear Society in 2015 [C]. Mianyang: China Atomic Energy Press, 2015: 203
|
|
成 弘, 王坚朴. 重碳酸盐溶液pH的普遍化计算公式 [A]. 中国核学会2015年学术年会论文集 [C]. 绵阳: 中囯原子能出版社, 2015: 203
|
24 |
Xie T, Lin H, Xu J, et al. CO2 corrosion behavior of oil casing steel made from different materials [J]. Surf. Technol., 2017, 46(1): 211
|
|
谢 涛, 林 海, 许 杰 等. 不同材质油套管钢的CO2腐蚀行为 [J]. 表面技术, 2017, 46(1): 211
|
25 |
He X. Study on CO2 corrosion rule by weight loss of test piece [J]. Contemp. Chem. Ind., 2017, 46: 616
|
|
何 旭. 利用挂片失重法对CO2腐蚀规律的研究 [J]. 当代化工, 2017, 46: 616
|
26 |
Kahyarian A, Achour M, Nesic S. CO2 corrosion of mild steel [A]. El-Sherik A M. Trends in Oil and Gas Corrosion Research and Technologies [M]. United Kingdom: Woodhead Publishing, 2017: 149
|
27 |
Ye F, Ge P L, Xu Y Y, et al. Effect of pH value on the stability of corrosion product film in H2S/CO2 environment [J]. Mater. Prot., 2020, 53(7): 55
|
|
叶 帆, 葛鹏莉, 许艳艳 等. H2S/CO2环境中pH值对腐蚀产物膜以及腐蚀速率的影响 [J]. 材料保护, 2020, 53(7): 55
|
28 |
Tian G. A study of influence on carbon dioxide corrosion rate by velocity [D]. Xi'an: Xi'an Shiyou University, 2010
|
|
田 光. 流速对二氧化碳腐蚀速率影响的研究 [D]. 西安: 西安石油大学, 2010
|
29 |
Li J P, Zhao G X, Hao S M. Dynamic corrosion behaviors of N80, P105 and SM110 steel [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 241
|
|
李建平, 赵国仙, 郝士明. 几种因素对油套管钢CO2腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2005, 25: 241
|
30 |
Zhao G X, Lü X H, Han Y. Effect of flow rate on CO2 corrosion behavior of P110 steel [J]. J. Mater. Eng., 2008, (8): 5
|
|
赵国仙, 吕祥鸿, 韩 勇. 流速对P110钢腐蚀行为的影响 [J]. 材料工程, 2008, (8): 5
|
31 |
Li Y Y, Liu D, Zhu G Y, et al. Effects of temperature and flow velocity on the corrosion behavior of N80 carbon steel in supercritical CO2 environment [J]. Surf. Technol., 2020, 49(3): 35
|
|
李岩岩, 刘 丹, 朱光宇 等. 超临界CO2环境中温度和流速对N80碳钢腐蚀行为的影响 [J]. 表面技术, 2020, 49(3): 35
|
32 |
Fan X. Advances in the application of corrosion inhibitor in oil and gas well production [J]. Shandong Chem. Ind., 2022, 51(4): 100
|
|
范 鑫. 缓蚀剂在油气井生产中的应用研究进展 [J]. 山东化工, 2022, 51(4): 100
|
33 |
Gu G L, Zou H K, Ma L, et al. Study of a mixed CO2 compound absorbent for CO2 with monoethanolamine as the main component [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2010, 37(3): 20
|
|
顾光临, 邹海魁, 马乐 等. 乙醇胺为主体的CO2吸收剂的复配研究 [J]. 北京化工大学学报(自然科学版), 2010, 37(3): 20
|
34 |
Hu S. Study on the inhibition mechanisms of precipitation inhibitors [D]. Wuhan: Huazhong University of Science & Technology, 2019
|
|
胡 帅. 沉淀膜型缓蚀剂的机理研究 [D]. 武汉: 华中科技大学, 2019
|
35 |
Ni X L, Li H, Li Y F, et al. Corrosion protection of imidazoline corrosion inhibitors with different carbon chain length in CO2 driving oil environment [J]. Surf. Technol., 2023, 52(8): 278
|
|
倪小龙, 李 欢, 李云飞 等. 不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用 [J]. 表面技术, 2023, 52(8): 278
|
36 |
Yan W X, Tian D D, Huang M, et al. Effect of hydrophobic chain of imidazoline corrosion inhibitor on corrosion inhibition performance [J]. Nat. Gas Oil, 2022, 40(5): 101, 131
|
|
颜万鑫, 田德道, 黄 孟 等. 咪唑啉缓蚀剂疏水基链对缓蚀性能的影响 [J]. 天然气与石油, 2022, 40(5): 101, 131
|
37 |
Sun M Q, Ge J J, Zhang G C, et al. Relationship between molecular structure of imidazoline and its corrosion inhibition performance in salty solution with saturated CO2 [J]. Petrochem. Technol., 2005, 34: 1177
|
|
孙铭勤, 葛际江, 张贵才 等. 饱和CO2盐水中咪唑啉分子结构与其缓蚀性能的关系 [J]. 石油化工, 2005, 34: 1177
|
38 |
Wu Y X, Sun F. Corrosion inhibition of a new thiourea derivative toward carbon steel in highly-mineralized CO2-saturated brin [J]. Petrochem. Ind. Technol., 2023, 30(5): 1
|
|
吴一新, 孙 飞. 新型硫脲衍生物在高矿化度饱和CO2盐水中对碳钢的缓蚀作用 [J]. 石化技术, 2023, 30(5): 1
|
39 |
Zhao G X, Chen C F, Lu M X. Corrosion of Cr-bearing steel and carbon steel in CO2 solution [J]. Mater. Prot., 2002, 35(8): 15, 19
|
|
赵国仙, 陈长风, 路民旭. 添加Cr对碳钢在CO2水溶液中耐蚀性的影响 [J]. 材料保护, 2002, 35(8): 15, 19
|
40 |
Chen C F, Lu M X, Zhao G X, et al. Characteristics of CO2 corrosion scales on 1%Cr-containing N80 steel [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 330
|
|
陈长风, 路民旭, 赵国仙 等. 含1%Cr的N80钢CO2腐蚀产物膜特征 [J]. 中国腐蚀与防护学报, 2003, 23: 330
|
41 |
Huang Y, Ma L, Xu F B, et al. Effect of Cr content on corrosion resistance of low alloy steels in a high temperature, high pressure and high salinity environment [J]. Corros. Prot., 2022, 43(1): 38
|
|
黄 熠, 马 磊, 许发宾 等. Cr含量对低合金钢在高温高压高矿化度环境中耐腐蚀性能的影响 [J]. 腐蚀与防护, 2022, 43(1): 38
|
42 |
Zhu J Y, Tan C T, Bao F H, et al. CO2 corrosion behaviour of a novel Al-containing low Cr steel in a simulated oilfield formation water [J]. Chin. J. Mater. Res., 2020, 34: 443
|
|
朱金阳, 谭成通, 暴飞虎 等. 一种新型含Al低Cr合金钢在模拟油田采出液环境下的CO2腐蚀行为 [J]. 材料研究学报, 2020, 34: 443
doi: 10.11901/1005.3093.2019.489
|
43 |
Qi L. Study of oxidative corrosion behavior of Fe-Cr based alloy in high-temperature CO2 [D]. Lanzhou: Lanzhou University, 2023
|
|
祁 乐. 铁铬基合金在高温CO2中的氧化腐蚀行为研究 [D]. 兰州: 兰州大学, 2023
|
44 |
Shen P H. Electroplating Manual (Volume 1) [M]. Beijing: China Machine Press, 2010: 4
|
|
沈品华. 现代电镀手册(上册) [M]. 北京: 机械工业出版社, 2010: 4
|
45 |
Cobo E O, Suárez Baldo R A, Bessone J B. Corrosion of chromium plated rotor in drilling fluid [J]. Surf. Coat. Technol., 1999, 122: 39
|
46 |
Petukhov I V, Shcherban' M G, Kichigin V I, et al. Corrosion degradation of chromium coatings on steel in NaCl concentrated solution [J]. Prot. Met., 2006, 42: 378
|
47 |
Zhou W, Lan W, Cao X L, et al. Research progress of corrosion mechanism and protection technologies for drill pipe in CO2-H2S environment [J]. Electroplat. Finish., 2017, 36(3): 131
|
|
周 文, 兰 伟, 曹献龙 等. CO2-H2S环境下钻杆腐蚀机理与防护技术的研究进展 [J]. 电镀与涂饰, 2017, 36(3): 131
|
48 |
Zhao S. Study on the effect of basic working conditions on corrosion of hard chromium plating on screw drill [D]. Chongqing: Chongqing University of Science and Technology, 2017
|
|
赵 帅. 基本工况条件对螺杆钻具硬铬镀层腐蚀影响的研究 [D]. 重庆: 重庆科技学院, 2017
|
49 |
Liang Q F. Chromium electroplating and its research development [J]. Guangdong Chem. Ind., 2007, 34(11): 67, 8
|
|
梁奇峰. 镀铬工艺及其研究进展 [J]. 广东化工, 2007, 34(11): 67, 8
|
50 |
Li J Z, Lin A, Gan F X. Alternatives to hexavalent chromium electroplating and their applications [J]. Electroplat. Finish., 2004, 23(5): 30
|
|
李家柱, 林 安, 甘复兴. 取代重污染六价铬电镀的技术及应用 [J]. 电镀与涂饰, 2004, 23(5): 30
|
51 |
Yuan S P. Discussion on multilayered electroplating processes [J]. Electroplat. Finish., 2013, 32(6): 13
|
|
袁诗璞. 几种多层电镀工艺的讨论 [J]. 电镀与涂饰, 2013, 32(6): 13
|
52 |
Chang Z H, Liu Q, Zhao H D, et al. Corrosion preventive property of three kinds of electroplated nickel films on the steel surface using electrochemical impedance spectroscopy [J]. J. Mater. Metall., 2016, 15: 291
|
|
常占河, 柳 泉, 赵宏达 等. 用电化学阻抗谱研究钢表面三种电镀镍层的耐蚀性 [J]. 材料与冶金学报, 2016, 15: 291
|
53 |
Xu W Z. Study on surface sealing technology of electroplated nickel layer [J]. World Nonf. Met., 2018, (10): 200
|
|
徐文柱. 电镀镍层表面封孔工艺研究 [J]. 世界有色金属, 2018, (10): 200
|
54 |
Zhu W Y, Huang H, Shi Q Q, et al. Measures to improve corrosion resistance of nickel coating on low-carbon steel [J]. Electroplat. Finish., 2020, 39: 1319
|
|
朱万宇, 黄 皓, 史青青 等. 改善低碳钢镀镍层耐蚀性的方法 [J]. 电镀与涂饰, 2020, 39: 1319
|
55 |
Sun F Y, Zhao G X, Guo Q C, et al. Effect of Ni-W alloy coating on the corrosion resistance of QT-900 coiled tubing [J]. Surf. Technol., 2014, 43(6): 6, 15
|
|
孙福洋, 赵国仙, 郭清超 等. 镍钨合金镀层对QT-900油管耐CO2腐蚀的影响 [J]. 表面技术, 2014, 43(6): 6, 15
|
56 |
Tang Z W, Yao B, Ji Z N, et al. CO2 corrosion resistance of amorphous nickel-tungsten alloy coated tubing [J]. Corros. Prot., 2020, 41(10): 12, 68
|
|
唐泽玮, 姚 斌, 姬振宁 等. 非晶态镍钨合金镀层油管的耐CO2腐蚀性能 [J]. 腐蚀与防护, 2020, 41(10): 12, 68
|
57 |
Song Z H, Zhang S C, Zhou L Z, et al. Applicability of tungsten nickel alloy coated tubing [J]. Corros. Prot., 2014, 35: 1256
|
|
宋中华, 张士诚, 周理志 等. 钨镍合金镀层油管适用性 [J]. 腐蚀与防护, 2014, 35: 1256
|
58 |
Lei T X, Fu J L, Zhang C K. Application of electrodeposition of Ni-W alloy on tubing [J]. Chem. Enterp. Manag., 2023, (5): 80
|
|
雷同鑫, 付江龙, 张长科. 电沉积镍钨合金技术在油管上的应用 [J]. 化工管理, 2023, (5): 80
|
59 |
Zhou W Q. Formation and performance of Ni-W amorphous alloy deposit [J]. Electroplat. Finish., 1996, 15(4): 18
|
|
周婉秋. Ni-W非晶态镀层的制备和性能研究 [J]. 电镀与涂饰, 1996, 15(4): 18
|
60 |
Qiu Z C, Xiong C M, Ye Z R, et al. Corrosion behavior of nickel and tungsten alloy plating in high CO2 and low H2S corrosive environment [J]. Oil Field Equip., 2017, 46(4): 47
|
|
裘智超, 熊春明, 叶正荣 等. 镍钨合金镀层在高含CO2及低含H2S环境下腐蚀行为 [J]. 石油矿场机械, 2017, 46(4): 47
|
61 |
Wang X M. Study on the corrosion behaviours of electrodeposited tungsten alloys in H2S environment and the properties of pulse electrodeposited tungsten alloy [D]. Changsha: Hunan University, 2009
|
|
王秀敏. 电镀钨合金耐H2S腐蚀研究及脉冲电沉积钨合金 [D]. 长沙: 湖南大学, 2009
|
62 |
Chen G. Study on process and properties of Ni-W alloy coatings produced by pulse plating [D]. Wuxi: Jiangnan University, 2006
|
|
陈 广. 脉冲电镀Ni-W合金镀层及其性能研究 [D]. 无锡: 江南大学, 2006
|
63 |
Liu S. Researchon nickel-tungsten alloy plating process [D]. Harbin: Harbin Institute of Technology, 2016
|
|
刘 爽. 镍钨合金电沉积工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
64 |
Sheng C S, Liu X W, Miao P. Corrosion protection technology of diffused coatings and prospect [J]. Corros. Prot. Petrochem. Ind., 2011, 28(6): 4
|
|
盛长松, 刘希武, 苗 普. 油气田渗镀涂层防腐蚀技术及展望 [J]. 石油化工腐蚀与防护, 2011, 28(6): 4
|
65 |
Liu Y K. A study on the preparation and properties of amorphous niekel phosphorous eleetroplating deposits [D]. Changsha: Hunan University, 2006
|
|
刘应科. 镍磷非晶态镀层的制备及其性能研究 [D]. 长沙: 湖南大学, 2006
|
66 |
Li J, Sun C, Roostaei M, et al. Insights into the electrochemical corrosion behavior and mechanism of electroless Ni-P coating in the CO2/H2S/Cl- environment [J]. Corrosion, 2020, 76(6): 578
|
67 |
Ye C Y, Wang Z B, Ren C Q, et al. Study on CO2 corrosion resistance of oil steel J55 and it's Ni-P coating [J]. Oil Field Equip., 2004, 33(2): 25
|
|
叶春艳, 王占榜, 任呈强 等. J55油管钢及其镍磷镀层的抗CO2腐蚀性能研究 [J]. 石油矿场机械, 2004, 33(2): 25
|
68 |
Chen H J, Wang L L. Research of the corrosion resistance performance of electroless Ni-P coating [J]. Guangzhou Chem. Ind., 2012, 40(12): 12
|
|
陈慧娟, 王玲玲. 化学镀Ni-P镀层的耐蚀性研究 [J]. 广州化工, 2012, 40(12): 12
|
69 |
Liu D F. Factors affecting corrosion resistance of electroless Ni-P [J]. Electroplat. Pollut. Control, 1999, 19(2): 15
|
|
刘定福. 化学镀Ni-P合金耐蚀性的影响因素 [J]. 电镀与环保, 1999, 19(2): 15
|
70 |
Han X, Chen J, Sun D L, et al. Effects of pulse current density on corrosion resistance of Ni-W alloy coatings [J]. Electroplat. Pollut. Control, 2014, 34(4): 26
|
|
韩 啸, 陈 吉, 孙冬来 等. 脉冲电流密度对Ni-W合金镀层耐蚀性的影响 [J]. 电镀与环保, 2014, 34(4): 26
|
71 |
Zhou H H, Liao Z W, Fang C X, et al. Pulse electroplating of Ni-W-P coating and its anti-corrosion performance [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(1): 88
|
|
周海晖, 廖作为, 方晨旭 等. 脉冲电镀Ni-W-P镀层及其耐蚀性 [J]. 中国有色金属学报(英文版), 2018, 28(1): 88
|
72 |
Xiong Y N. Study on the Ni-P alloy and namo composite coating [D]. Changsha: Hunan University, 2010
|
|
熊轶娜. 镍磷合金及其纳米复合镀层的研究 [D]. 长沙: 湖南大学, 2010
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|