Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 882-889    DOI: 10.11902/1005.4537.2022.261
Current Issue | Archive | Adv Search |
Oxidation Kinetics of 9Ni Steel Billet at High Temperature
GUO Tao, HUANG Feng(), HU Qian, LIU Jing
State Key Laboratory of Refractories and Metallurgy, Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(17173KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of 9Ni steel slab at 900~1250 ℃ were investigated by employing a combined thermal analysis and mass spectrometer system, field emission scanning electron microscopy (FE-SEM), field emission electron probe microscopy (FE-EPMA), X-ray diffractometer (XRD) and soft wear FactSage10.0. The results show that the constant temperature oxidation of 9Ni steel at 900-1250 ℃ mainly follows the parabolic law, and the oxidation rate is controlled by the diffusion of metallic ions in the oxide layer, Ni exists in the oxide layer in the form of FeNi3 and NiFe2O4 in the inner layer, and elemental Ni enriched at the boundary of the inner/outer layers of the formed oxide scale, and intertangled with Fe-oxides, The high temperature corrosion at grain boundaries of 9Ni steel billet should be attributed to Fe2SiO4 (ferrosilicon olivine) which come from the combining of SiO2 generated by Si oxidation and FeO of the product of iron oxidation, When the temperature is higher than the eutectic temperature (about 1170 ℃), ferrosilicon olivine will be irregularly permeated into austenite grain boundaries in the matrix as liquid.

Key words:  9Ni steel billet      oxide sheet structure      network structure      high temperature grain boundary corrosion     
Received:  22 August 2022      32134.14.1005.4537.2022.261
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U21A20113)
Corresponding Authors:  HUANG Feng, E-mail: huangfeng@wust.edu.cn   

Cite this article: 

GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 882-889.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.261     OR     https://www.jcscp.org/EN/Y2023/V43/I4/882

Fig.1  Structure of 9Ni steel billet
Fig.2  Isothermal ternary phase diagrams of FeO-SiO2-NiO (a) and Fe2O3-SiO2-NiO (b) (1250 ℃, 105 Pa)
Fig.3  Oxidation kinetics curves of 9Ni steel billet at different temperatures
Fig.4  Cross-sectional morphologies and corresponding element mappings of the oxide scales formed on 9Ni steel billet after oxidation for 2 h at 900 ℃ (a), 1000 ℃ (b), 1100 ℃ (c), 1150 ℃ (d), 1200 ℃ (e) and 1250 ℃ (f)
Fig.5  Cross-sectional morphologies of the inner oxide layers of 9Ni steel billet after oxidation for 2 h at 900 ℃ (a), 1000 ℃ (b), 1100 ℃ (c), 1150 ℃ (d), 1200 ℃ (e) and 1250 ℃ (f)
Fig.6  EPMA element mappings of the cross section of the inner oxide layer of 9Ni steel billet after oxidation at 1250 ℃ for 2 h
Fig.7  Secondary electron image (a) and EDS analysis results of element contents in the marked points in Fig.7a (b-f) of the inner oxide layer of 9Ni steel billet after oxidation at 1250 ℃ for 2 h
Fig.8  XRD patterns of 9Ni steel billet oxidized for 2 h at 900-1100 ℃ (a) and 1150-1250 ℃ (b)
Fig.9  Square diagram of oxidized mass gain of 9Ni steel billet at different temperatures
Fig.10  Oxidation activation energy of 9Ni steel billet in air at 900-1250 oC
Fig.11  High temperature oxidation mechanism of 9Ni steel billet
Fig.12  Schematic diagram of high temperature intergranular corrosion
1 Bai J B, Dong H Q, Zhu H B, et al. Development status of 9Ni steel and welding materials [J]. Electr. Weld. Mach., 2021, 51 (4): 57
白建斌, 董海青, 朱海滨 等. 9Ni钢及其焊材发展现状 [J]. 电焊机, 2021, 51(4): 57
2 Chen S P, Li Z. Analysis and discussion about 9Ni steel applied in LNG tank [J]. Chem. Equip. Technol., 2009, 30(6): 40
陈社鹏, 李 臻. 9Ni钢在LNG储罐中的应用分析与探讨 [J]. 化工装备技术, 2009, 30(6): 40
3 Pan T, Zhu J, Yang C F, et al. Kinetics simulation and experimental observation of fine microstructure of 9% Ni cryogenic steel processed by QLT heat treatment [J]. Chin. Sci. Bull., 2014, 59: 1765
doi: 10.1007/s11434-014-0139-3
4 Wu D Y, Han X L, Tian H T, et al. Microstructural characterization and mechanical properties analysis of weld metals with two Ni contents during post-weld heat treatments [J]. Metall. Mater. Trans., 2015, 46A: 1973
5 Li Z H, Fan X F, Gong R Z, et al. Effect of heat treatment on low temperature toughness of 9Ni steel [J]. Mech. Eng., 2018, (3): 86
李志海, 樊湘芳, 龚仁政 等. 热处理对9Ni钢低温韧性的影响 [J]. 机械工程师, 2018, (3): 86
6 Geng D D, Yan C Y, Na X Y, et al. Analysis on 9Ni steel used for LNG store tank and its weldability [J]. Welded Pipe Tube, 2015, (5): 5
耿都都, 严春妍, 纳学洋 等. LNG储罐用9Ni钢及其焊接性分析 [J]. 焊管, 2015, (5): 5
7 Li F. Sensitivity analysis of welding cold crack in 9%Ni steel [J]. Locomot. Roll. Stock Technol., 2010, (2): 13
李 福. 9%Ni钢的焊接冷裂纹敏感性分析 [J]. 机车车辆工艺, 2010, (2): 13
8 Otsuka N, Fujikawa H. Scaling of austenitic stainless steels and nickel-base alloys in high-temperature steam at 973 K [J]. Corrosion, 1991, 47: 240
doi: 10.5006/1.3585251
9 Fukagawa T, Okada H, Maehara Y. Mechanism of red scale defect formation in Si-added hot-rolled steel sheets [J]. ISIJ Int., 1994, 34: 906
doi: 10.2355/isijinternational.34.906
10 Cao G M, Gao X Y, Shan W C, et al. High temperature oxidation behavior of Ni-based low temperature steel [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41: 792
曹光明, 高欣宇, 单文超 等. Ni系低温钢的高温氧化行为研究 [J]. 东北大学学报 (自然科学版), 2020, 41: 792
11 Liu Y Z, Yang C F, Chai F, et al. High temperature oxidation resistance of 9Ni steel [J]. J. Iron Steel Res. Int., 2014, 21: 956
doi: 10.1016/S1006-706X(14)60168-0
12 Zhang H. Study on the microstructures and formation mechanism of oxide film of low alloy steel [D]. Shenyang: Northeastern University, 2010
张 欢. 低合金钢表面氧化膜的形成及显微结构的研究 [D]. 沈阳: 东北大学, 2010
13 Zhu G J. An Example of an Application of the Transmission Principle [M]. Beijing: Metallurgical Industry Press, 2017
朱光俊. 传输原理应用实例 [M]. 北京: 冶金工业出版社, 2017
14 Hu Y B. Analysis on the relationship between oxidation kinetics and oxide film structure evolution of the nickel-based superalloy [D]. Dalian: Dalian University of Technology, 2019
胡叶兵. 镍基高温合金氧化动力学与氧化膜结构的演化规律关系研究 [D]. 大连: 大连理工大学, 2019
15 Zhang Q, Liang T S, Wang W, et al. Oxidation kinetics and microstructure evolution of nanocrystalline Ni-12Cr alloy at 800 ℃ [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 733
张 勤, 梁涛沙, 王 文 等. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化 [J]. 中国腐蚀与防护学报, 2022, 42: 733
16 Song Z Q, Li Z Q, Zheng X D, et al. Oxidation kinetics and interfacial bonding properties of Ni-Co based superalloys [J]. J. Cent. South Univ. (Sci. Technol.), 2019, 50: 1537
宋正奇, 李志强, 郑绪东 等. 镍钴基高温合金的氧化动力学与界面结合性能 [J]. 中南大学学报 (自然科学版)2019, 50: 1537
17 Zhang K, Wu H B, Tang D. High temperature deformation behavior of Fe-9Ni-C alloy [J]. J. Iron Steel Res. Int., 2012, 19: 58
doi: 10.1016/S1006-706X(12)60100-9
18 Xie L P, Chen M H, Wang J L, et al. High temperature oxidation behavior of ultrafine grained ODS nickel-based superalloy prepared by spark plasma sintering [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 709
解磊鹏, 陈明辉, 王金龙 等. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 709
doi: 10.11902/1005.4537.2021.237
19 Zhang Y D, Jin S B, Jiang C L, et al. Formation of high-temperature inner oxide scale on low alloy steels: Segregation, partitioning and transformation reactions [J]. Corros. Sci., 2022, 195: 109980
doi: 10.1016/j.corsci.2021.109980
20 Li D H, Chen J X, Etim I P, et al. High temperature oxidation behavior of Ni-based superalloy Nimonic95 and the effect of pre-oxidation treatment [J]. Vacuum, 2021, 194: 110582
doi: 10.1016/j.vacuum.2021.110582
21 Li T F. The role of metallic grain boundary in high temperature oxidation [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 180
李铁藩. 金属晶界在高温氧化中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 180
22 Yuan Q. Research on the high-temperature oxidation behavior of low carbon silicon-containing steels and the formation mechanism of net-like Fe2SiO4/FeO [D]. Wuhan: Wuhan University of Science and Technology, 2019
袁 清. 低碳含Si钢高温氧化行为及网格状Fe2SiO4/FeO形成机理研究 [D]. 武汉: 武汉科技大学, 2019
[1] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[2] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[3] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[4] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[5] QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan. Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System[J]. 中国腐蚀与防护学报, 2023, 43(4): 821-827.
[6] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[7] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[8] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[9] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[10] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[11] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[12] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[13] Chao Shi. Preparation of zinc phytate and effect on corrosion behavior of carbon steel[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[14] LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[15] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
No Suggested Reading articles found!