Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 381-388    DOI: 10.11902/1005.4537.2015.204
Orginal Article Current Issue | Archive | Adv Search |
Research Progress on AC Interference of Electrified Railway on Buried Pipeline
Wei LI,Yanxia DU(),Zitao JIANG,Minxu LU
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(1575KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of economy, the industrial sectors such as energy and transportation have been growing rapidly, therefore, more and more engineering cases are inevitable that the AC electrified railways should cross or parallel buried pipelines, thereby the effect of AC interference of the electric railway on the buried pipeline is becoming more and more serious. The paper tries to introduce issues related with the effect of AC interference as the follow: AC interference style of electrified railway, the judgment standard of AC interference and mitigation methods, introduced the research status and research progress on AC interference of electrified railway on the buried pipeline. At last, the research trend of the AC interference of electrified railway was discussed.

Key words:  electrified railway      buried pipeline      AC interference      research progress     

Cite this article: 

Wei LI,Yanxia DU,Zitao JIANG,Minxu LU. Research Progress on AC Interference of Electrified Railway on Buried Pipeline. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 381-388.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.204     OR     https://www.jcscp.org/EN/Y2016/V36/I5/381

Fig.1  Schematic diagram of electrified railwaytraction power supply system[5]
Fig.2  Principle schematic diagram of the AT power supply mode[3]
Fig.3  Schematic diagram of impedance couplinginterference[5]
Fig.4  Schematic diagram of inductive couplinginterference[5]
Fig.5  AC voltage and AC current density on buried pipeline near high voltage AC transmission line[5]
Fig.6  AC voltage and AC current density on buried pipeline near electrified railway[5]
Operating state People Structure
Normal use 60 V 60 V for the voltage to remote earth
50 V for the voltage-to-earth on the measuring site
Conditions of
fault
430÷2000 V for switch intervention time between 1 and 0.1 s 2000 V for the voltage to remote earth
500 V for insulating joints
2000 V for monolithic joints
Table 1  Voltage-to-earth limits prescribed by the Italian provisional standard CEI 93-4[26]
[1] Gao P, Wang P H, Wang H Y, et al.Progress in China's oil and gas pipeline construction in 2014[J]. Int. Pet. Econ., 2015, 23(3): 12
[1] (高鹏, 王培鸿, 王海英等. 2014年中国油气管道建设新进展[J]. 国际石油经济, 2015, 23(3): 12)
[2] Medium and long-term railway network development plan (2008 revision)[J]. Rail. Know., 2008, (6): 4
[2] (中长期铁路网规划 (2008年调整)[J]. 铁道知识, 2008, (6): 4)
[3] Santi G, Sandrolini L.Stray current interference on high-speed rail transit systems and surrounding buried metallic structures [A]. Proc. 6th Int. Congress CeoCor[C]. Giardini Naxos, 2003
[4] Panossian Z, Filho S, Almeida N D, et al.Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009[C]. Houston, 2009: 09541
[5] Bosko M, Bozidar F G, Tomislav R.Electromagnetic fields and induced voltages on underground pipeline in the vicinity of AC traction system[J]. J. Ener. Power Eng., 2014, 8(7): 1333
[6] Martinez S.Estimation of AC interferences on pipelines running parallel to the railway line prior to changing traction from 3 kV DC to 25 kV AC and design of mitigation [A]. CeoCor 2013[C]. Florence, 2013
[7] Baeckmann W, Schwenk W.Handbuch des Kathodischen Korrosionsschutzes (4Auflage)[M]. Weinheim: Wiley-VCH Verlagsgruppe, 1999
[8] Wu C F, Wang B, Pei Q, et al.AC stray current testing and evaluation of the tieling-qinhuangdao pipeline[J]. Pipeline Technol. Equip.,2014, (1): 36
[8] (吴长访, 王波, 裴青等. 铁秦线管道交流杂散电流干扰检测与评价[J]. 管道技术与设备, 2014, (1): 36)
[9] Dong L, Lu M X, Du Y X, et al.Investigation progress of alternating current corrosion on buried pipelines[J]. J. Chin. Soc. Corros. Prot., 2011, 31(3): 173
[9] (董亮, 路民旭, 杜艳霞等. 埋地管道交流腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2011, 31(3): 173)
[10] Hosokawa Y, Kajiyama F, Nakamura Y.New cathodic protection criteria based on direct and alternating current densities measured using coupons and their application to modern steel pipelines[J]. Corrosion, 2004, 60(3): 304
[11] Yu K, Zhu F, Yan J B, et al.Testing of DC stray current along high-speed railway[J]. High-speed Rail. Technol., 2014, 5(5): 14
[11] (于凯, 朱峰, 严加斌等. 高速铁路附近直流杂散电流测试研究[J]. 高速铁路技术, 2014, 5(5): 14)
[12] Yang Y.Organic rock: "new nemesis" of corrosion[J]. Chem. Manage., 2015, (4): 67
[12] (杨扬. 有机岩:腐蚀"新克星"[J]. 化工管理, 2015, (4): 67)
[13] The Engineering Design Appraisal Center of Railways Ministry. Protection Engineering Design Guidelines of Electromagnetic Interference on Communication Lines and Other Facilities [M]. Beijing: China Railway Publishing House, 2009: 1
[13] (铁道部工程设计鉴定中心. 通信线路及其他设施电磁干扰防护工程设计指南 [M]. 北京: 中国铁道出版社, 2009: 1)
[14] Zhang X F.Research on cophase at traction power supply system in high-speed railway [D]. Chengdu: Southwest Jiaotong University, 2000
[14] (张秀峰. 高速铁路同相AT牵引供电系统研究 [D]. 成都: 西南交通大学, 2000)
[15] Peng C.Protection scheme and setting calculation of AT traction power supply system for high speed railways [D]. Chengdu: South-west Jiaotong University, 2009(彭晨. 高速铁路AT牵引供电系统的保护配置与整定 [D]. 成都: 西南交通大学, 2009)
[16] Zhang X Y.Calculation and protective measures of electromagnetic interference induced by electrified railway on the oil and gas pipelines[J]. Oil Depot. Gas Stat., 2010, 19(4): 29
[16] (张小月. 电气化铁道对油气管道电磁干扰的计算及防护措施[J]. 石油库与加油站, 2010, 19(4): 29)
[17] Fickert L, Schmautzer E, Braunstein R, et al.Reduction of the electrical potential of interfered pipelines due to currents of high voltage power lines and electric railways[J]. Elektr. Inf., 2010, 127(12): 362
[18] Sun P Q.AC Interference induced by electrified railway on buried metal pipelines and its protective measures[J]. Urban Gas, 2011, (4): 7
[18] (孙佩奇. 电气化铁路对埋地钢质燃气管道的交流干扰及其防护措施[J]. 城市燃气, 2011, (4): 7)
[19] Braunstein R, Schmautzer E, Graz G P.Comparison and discussion on potential mitigating measures regarding inductive interference of metallic pipelines [A]. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS)/2010[C]. Bologna: 2010
[20] GB/T50698-2011. Standard for AC interference mitigation of buried steel pipelines[S]
[20] (GB/T50698-2011. 埋地钢质管道交流干扰防护技术标准[S])
[21] PKN CEN/TS 15280-2007. Evaluation of AC corrosion likelihood of buried pipelines—application to cathodically protected pipelines[S]
[22] NACE RP0177-2000. Mitigation of AC and lightning effects on metallic structures and corrosion control systems[S]
[23] TechnischeEmpfehlung Nr. 30 (TE 30). Ma?nahmenbeibau und betrieb von rohrleitungenimeinflussbereich von starkstromanlagenmitnennspannungenüber 1 kV[S]
[24] DVGW GW 22-B1. Ma?nahmenbeimbau und betrieb von rohrleitungenimeinflussbereich von hochspannungs-drehstromanlagen und wechselstrom-bahnanlagen GW 22-B1. Ma?nahmenbeimbau und betrieb von rohrleitungenimeinflussbereich von hochspannungs-drehstromanlagen und wechselstrom-bahnanlagen[S]. 2006
[25] TB/T2832-1997. Permissible value influenced by AC electrified railway on oil (or gas) pipeline (including oil depot) and its protective measures[S]
[25] (TB/T2832-1997. 交流电气化铁道对油 (气) 管道 (含油库) 的影响容许值及防护措施[S])
[26] Italian Provisional Standard CEI 9-34. Effettidelleinterferenzeelett-romagneticheprovocate da linee di trazioneferroviarieelettrificate in corrente alternate sutubazioni. Valoriammissibili e provvedimentidi protezione[S]
[27] Guo Q R, He W Z, Zuo G, et al.Study of interference with oil pipeline from electrified railway and protective methods[J]. Pet. Eng. Constr., 2005, 31(4): 51
[27] (郭庆茹, 何悟忠, 左戈等. 电气化铁路对输油管道的干扰及其防护方法的研究[J]. 石油工程建设, 2005, 31(4): 51)
[28] Li Z L, Sun Y F, Chen S K, et al.Influence of Alternating current electrified railway stray current on buried pipelines[J]. Corros.Prot., 2011, 32(3): 177
[28] (李自力, 孙云峰, 陈绍凯等. 交流电气化铁路杂散电流对埋地管道电位影响规律[J]. 腐蚀与防护, 2011, 32(3): 177)
[29] Wei X.Study on corrosion interference of the buried pipeline by AC electrified railway[J]. Qingdao: China University of Petroleum (East China), 2012
[29] (卫续. 交流电气化铁路对埋地管道腐蚀干扰研究 [D]. 青岛: 中国石油大学 (华东), 2012)
[30] Wang S P.Interference and protection of pipeline adjacent to AC electrified railway[J]. Pipeline. Technol. Equip., 2013, (3): 36
[30] (王双平. 交流电气化铁路对路外管道干扰影响及防护[J]. 管道技术与设备, 2013, (3): 36)
[31] Xian J, Wang W B, Mei P, et al.Effect of stray current induced by electric railway on buried pipeline[J]. Total Corros. Control, 2013,27(4): 42
[31] (鲜俊, 王文斌, 梅鹏等. 电气化铁路杂散电流对埋地管线干扰影响研究[J]. 全面腐蚀控制, 2013, 27(4): 42)
[32] Cheng T, Fu S L, Qi Y M, et al.AC Interference of electrified railway on the buried gas pipeline[J]. Pipeline. Technol. Equip., 2012, (4): 37
[32] (程彤, 付山林, 齐永明等. 电气化铁路对埋地钢质燃气管道的交流干扰研究[J]. 管道技术与设备, 2012, (4): 37)
[33] Xu S Q.The study of influence and protection on nearby oil and gas underground pipeline by AC electric railway [D]. Xi'an: Xi'an Shiyou University, 2008(徐士祺. 交流电气化铁路对相邻油气管道干扰影响防护技术研究 [D]. 西安: 西安石油大学, 2008)
[34] Gao Y G, Shen Y M, Shi D.Resistive coupling effects of AC electric railway to surrounding electric and electronic system[J]. Des. Tech. Posts Telecommun., 2007, (3): 57
[34] (高攸纲, 沈远茂, 石丹. 交流电气化铁道对周围电气及电子系统的阻性耦合影响[J]. 邮电设计技术, 2007, (3): 57)
[35] BS EN 50443-2011. Effects of electromagnetic interference on pipelines caused by high voltage AC electric traction systems and /or high voltage AC power supply systems[S]
[36] CEOCOR-1995. Practical guide to cathodic protection[S]
[37] Yan S. Corrosion and protection of oli and gas pipeline under stay current from electrified railway [J]. Rail. Survey Des., 2011, (3): 94(卷)
[37] (阎顺. 交流电气化铁路杂散电流对油气管道的腐蚀与防护[J]. 铁道勘测与设计, 2011, (3): 94)
[38] Fu S L, Cheng T, Wang R Z.AC Stray current interference on direct potential of pipeline[J]. Pipeline. Technol. Equip., 2012, (5): 41
[38] (付山林, 程彤, 王瑞召等. 交流杂散电流干扰对管道直流电位的影响[J]. 管道技术与设备, 2012, (5): 41)
[39] Si D C.Electrified railway pipeline moving and electromagnetic protection[J]. Technol. Wind, 2015,(8): 124, 2015, (8): 124)
[40] Yan M Z, Gong L, Li Q P, et al.AC and DC influence on the pipeline from Zhongxian to Wuhan and disposal measures[J]. Corros. Prot., 2008, 29(2): 95
[40] (闫明珍, 龚亮, 李秋萍等. 忠县-武汉输气管道遇到的交直流干扰及防护措施[J]. 腐蚀与防护, 2008, 29(2): 95)
[41] Li S Z.Protection of underground metal pipeline under AC interference[J]. Corros. Sci. Prot. Technol., 1989, 1(2): 24
[41] (李绍忠. 地下金属管道交流干扰的防护 [J]. 腐蚀科学与防护技术, 1989, 1(2): 24)
[42] Yan X L.Introduction to stray current corrosion mechanism of buried pipelines and its status and development in research[J]. China Storage Transp., 2012, (10): 112
[42] (闫晓龙. 浅谈埋地管线杂散电流腐蚀机理及现状与发展[J]. 中国储运, 2012, (10): 112)
[43] Morelli V.Il sistema di alimentazione dell' A.V.-configurazioniadottate per limitare le interferenzeelettromagnetiche [A]. II ConvegnoNazionale APCE/1996[C]. Rome, 1996
[44] Zhao J, Shen G, Yin X, et al.Using computer software to simulate AC interference and mitigation measures of buried pipelines [A]. ICPTT/2012[C]. Wuhan, 2012: 161
[45] Du Y, Jiang Z, Lu M, et al.Study on AC interference mitigation design methods for buried pipelines [A]. Corrosion/2013[C]. Houston, NACE, 2013: 2444
[46] Dawalibi F, Southey R D, Ma J.Behaviour of grounding systems in multilayers soils: A parametric analysis[J]. IEEE Trans. Power Deliv., 1994, 9(1): 334
[47] Southey R D, Dawalibi F.Increasing the cost-effectiveness of AC interference mitigation designs with integrated electromagnetic field modeling [A]. Corrosion/2005[C]. Houston, NACE, 2005: 05623
[1] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[2] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[4] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[5] TANG Dezhi,DU Yanxia,LU Minxu,DONG Liang,JIANG Zitao. Progress in the Mutual Effects Between AC Interference and the Cathodic Protection of Buried Pipelines[J]. 中国腐蚀与防护学报, 2013, 33(5): 351-356.
[6] DONG Liang, LU Minxu, DU Yanxia, JIANG Zitao. INVESTIGATION PROGRESS OF ALTERNATING CURRENT CORROSION ON BURIED PIPELINES[J]. 中国腐蚀与防护学报, 2011, 31(3): 173-178.
[7] . Recent Progress in Study of Non-toxic Antifouling Coatings[J]. 中国腐蚀与防护学报, 2008, 28(3): 181-185 .
[8] GONG Jin-bao XU Nai-xin ZHANG Cheng-dian (Shanghai Institute of Metallurgy; Chinese Academy of Sciences; Shanghai 200050). THE EFFECT OF AC INTERFERENCE ON ELECTROCHEMICAL PERFORMANCE OF AZ41 MAGNESIUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 1998, 18(1): 21-26.
No Suggested Reading articles found!