Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 573-582    DOI: 10.11902/1005.4537.2021.151
Current Issue | Archive | Adv Search |
Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating
TIAN Weiping1, GUO Liangshuai2,3, WANG Yuhang3, ZHOU Peng3, ZHANG Tao3()
1.Qingan Group Co. Ltd., Xi'an 710077, China
2.Tianjin Aerospace Long March Rocket Manufacturing Co. Ltd., Tianjin 300462, China
3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(29868KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The plasma electrolytic oxidation (PEO) coating is a ceramic-like coating without catalytic activity of its surface, thus which should be activated with noble metal Pd before an electroless nickel (EN) plating process can be conducted. To replace the expensive Pd-activation process, Cu-activation and Ag-activation methods were developed. A field emission-scanning electron microscopy was employed to characterize the surface morphology and cross-section morphology of EN films on the Cu- and Ag-activated PEO coatings. In comparison with the Cu-activated PEO coating, a thicker, compact and more uniform EN layer film was formed on the Ag-activated PEO coating. Moreover, the results of electrochemical tests shown that the EN film plated on Ag-activated coating presents more or less the same corrosion resistance as the EN film plated on Pd-activated PEO coating, and better than the EN film plated on Cu-activated PEO coating. Hence, the Ag-activation method significantly reduce the cost, and best of all, it guaranteed the corrosion resistance of the composite coating.

Key words:  AZ91D Mg alloy      Cu/Ag activation      plasma electrolytic oxidation      electroless plating      composite coating     
Received:  29 June 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51771050);National Natural Science Foundation of China(51531007);Liaoning Revitalization Talents Program(XLYC2002071)
Corresponding Authors:  ZHANG Tao     E-mail:  zhangtao@mail.neu.edu.cn
About author:  ZHANG Tao, E-mail: zhangtao@mail.neu.edu.cn

Cite this article: 

TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 573-582.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.151     OR     https://www.jcscp.org/EN/Y2022/V42/I4/573

Fig.1  Macro image (a), SEM surface morphologies (b, c) and SEM cross-section morphology (d) of PEO coating
Fig.2  Macro images (a) and SEM images (b, c) of PEO coating after Cu-sensitized treatment and Macro images (d) and SEM images (e, f) of PEO coating after Cu-activation treatment
PositionOMgAlSiSCuAg
PEO52.0527.642.8117.50---------
A52.796.660.455.765.0829.26---
B30.3919.802.579.04---38.20---
Cu-activation45.4727.763.4216.65---6.70---
C46.7726.553.3016.39------6.99
D55.7324.341.918.53------9.50
Ag-activation52.4129.123.1213.63------1.72
Table 1  Composition of the coatings by EDS (mass fraction / %)
Fig.3  Elements distribution of PEO coating after Cu-activation treatment
Fig.4  Macro images (a) and SEM images (b, c) of PEO coating after Ag-sensitized treatment, and Macro images (d) and SEM images (e, f) of PEO coating after Ag-activation treatment
Fig.5  Elements distribution of PEO coating after Ag-activation treatment
Fig.6  XRD spectrum of PEO coating and PEO coating with various activation treatments
Fig.7  XPS spectrum of PEO coating with Cu-sensitized (a), Cu-activation (b), Ag-sensitized (c) and Ag-activation (b)
Fig.8  SEM images of PEO-Cu-EN (a), PEO-Ag-EN (b) and PEO-Pd-EN (c) coatings surface morphology after 3 min (a1-c1), 10 min (a2-c2), 30 min (a3-c3) dipping process and SEM image of PEO-EN coating cross-section morphology after 30 min dipping process (a4-c4)
Fig.9  XRD spectrum of the surface of the different composite coatings
Fig.10  Potentiodynamic polarization curves of Mg alloy AZ91D and its coatings
SampleIcorr / μA·cm-2Ecorr / mVSCE
AZ91D11.52±0.29-1578±29
PEO-Cu-EN8.06±0.30-506±20
PEO-Ag-EN5.12±0.50-453±21
PEO-Pd-EN4.92±0.50-414±20
Table 2  Fitted electrochemical parameters of polarization curves in Fig.11
Fig.11  Nyquist (a), Bode (b, c) plots of Mg alloy AZ91D and its coatings
Fig.12  Equivalent circuits used to fit the EIS data: (a) AZ91D, (b) PEO-Cu/Ag/Pd-EN
SampleCPEf / Ω-1·cm-2·s nnfRf / Ω cm2CPEdl / Ω-1·cm-2·s nn2Rct / Ω·cm2RL / Ω·cm2L / H·cm-2
AZ91D1.20×10-50.94451.74.15×10-40.42802.50392.861.98
PEO-Cu-EN9.27×10-818.6653.83×10-50.902.85×104------
PEO-Ag-EN5.08×10-50.961.50×1048.26×10-50.903.37×104------
PEO-Pd-EN7.41×10-40.941.04×1043.39×10-50.943.66×104------
Table 3  Fitted parameters of the EIS data
Fig.13  Macro images of the PEO-Cu-EN (a) and PEO-Ag-EN (b) during salt spray test
1 Zhang T, Li Y, Wang F. Roles of β phase in the corrosion process of AZ91D magnesium alloy [J]. Corros. Sci., 2006, 48: 1249
doi: 10.1016/j.corsci.2005.05.011
2 Zhang T, Liu X L, Shao Y W, et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model [J]. Corros. Sci., 2008, 50: 3500
doi: 10.1016/j.corsci.2008.09.033
3 Meng G Z, Shao Y W, Zhang T, et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins [J]. Electrochim. Acta, 2008, 53: 5923
doi: 10.1016/j.electacta.2008.03.070
4 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
doi: 10.1126/science.1092905
5 Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: S763
doi: 10.1016/S1003-6326(06)60297-5
6 Thomas S, Medhekar N V, Frankel G S, et al. Corrosion mechanism and hydrogen evolution on Mg [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 85
doi: 10.1016/j.cossms.2014.09.005
7 Singh C, Meena L K, Tiwari S K, et al. Establishing environment friendly surface treatment for AZ91 magnesium alloy for subsequent electroless nickel plating [J]. J. Electrochem. Soc., 2018, 165: C71
doi: 10.1149/2.1091802jes
8 Song Y W, Shan D Y, Han E-H. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys [J]. Electrochim. Acta, 2008, 53: 2135
doi: 10.1016/j.electacta.2007.09.026
9 Cheng I C, Fu E G, Liu L D, et al. Effect of fluorine anions on anodizing behavior of AZ91 magnesium alloy in alkaline solutions [J]. J. Electrochem. Soc., 2008, 155: C219
doi: 10.1149/1.2883739
10 Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys [J]. Corros. Sci., 2002, 44: 2737
doi: 10.1016/S0010-938X(02)00075-6
11 Xie Z H, Li D, Skeete Z, et al. Nanocontainer-enhanced self-healing for corrosion-resistant Ni coating on Mg alloy [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36247
doi: 10.1021/acsami.7b12036
12 Tulsi S S. Properties of electroless nickel [J]. Trans. IMF, 1986, 64: 73
doi: 10.1080/00202967.1986.11870738
13 Song Z W, Xie Z H, Yu G, et al. A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy [J]. J. Alloy. Compd., 2015, 623: 274
doi: 10.1016/j.jallcom.2014.10.130
14 Sun S, Liu J G, Yan C W, et al. A novel process for electroless nickel plating on anodized magnesium alloy [J]. Appl. Surf. Sci., 2008, 254: 5016
doi: 10.1016/j.apsusc.2008.01.169
15 Zeng L Y, Yang S W, Zhang W, et al. Preparation and characterization of a double-layer coating on magnesium alloy AZ91D [J]. Electrochim. Acta, 2010, 55: 3376
doi: 10.1016/j.electacta.2010.01.041
16 Malayoglu U, Tekin K C, Shrestha S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys [J]. Surf. Coat. Technol., 2010, 205: 1793
doi: 10.1016/j.surfcoat.2010.08.022
17 McCafferty E. Validation of corrosion rates measured by the tafel extrapolation method [J]. Corros. Sci., 2005, 47: 3202
doi: 10.1016/j.corsci.2005.05.046
18 Li Z J, Jing X Y, Yuan Y, et al. Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques [J]. Corros. Sci., 2012, 63: 358
doi: 10.1016/j.corsci.2012.06.018
19 Zhang X M, Wu G S, Peng X, et al. Mitigation of corrosion on magnesium alloy by predesigned surface corrosion [J]. Sci. Rep., 2015, 5: 17399
doi: 10.1038/srep17399
20 Song G L, Shi Z M. Corrosion mechanism and evaluation of anodized magnesium alloys [J]. Corros. Sci., 2014, 85: 126
doi: 10.1016/j.corsci.2014.04.008
[1] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] LI Jianyong, DAI Dianyu, QIAN Chen, DIAO Shulei, LIU Jinshan, LU Tongxin, SUN Yong, XIAO Fengjuan. Corrosion Behavior of PANI Nanofiber/Modified GO/Waterborne Epoxy Composite Coating on Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[3] AN Liang, GAO Changqi, JIA Jiangang, MA Qin. Review on Metal Silicide Anti-oxidation Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[4] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[5] Xuejun CUI, Jing PING. Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[6] Xuejun CUI,Xin DAI,Bingyu ZHENG,Yingjun ZHANG. Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[7] ZHU Junmou,YAO Zhengjun,JIANG Qiong,WEI Dongbo,YIN Guoxian,
LUO Xixi,ZHOU Wenbin. Microstructure and Corrosion Resistance of Cr-free Nanocomposite Zn/Al Coatings[J]. 中国腐蚀与防护学报, 2013, 33(5): 425-429.
[8] WANG Yingfa,HUANG Guosheng,CHENG Xudong,LI Xiangbo,XING Lukuo,GUO Juan,MA Yan. Research of Corrosion Behavior of Thermal Spraying Zn-Ni Composite Coating in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[9] GUO Quanzhong, ZHANG Wei, DU Keqin, WANG Rong. EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM[J]. 中国腐蚀与防护学报, 2012, 32(6): 467-472.
[10] XIAO Wei, SHAN Dayong, CHEN Rongshi. EFFECT OF PROCESS OF ELECTROLESS PLATING ON INVESTMENT CASTING ZA93 MAGNESIUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(2): 90-94.
[11] DING Jie, ZHANG Benge, YAN Mingzhen, LIU Jia. EFFECT OF RARE EARTH ON CORROSION RESISTANCE OF ELECTROLESS Ni-P/PVDF PLATINGS[J]. 中国腐蚀与防护学报, 2012, 32(2): 123-126.
[12] WANG Ping, CHENG Yingliang, ZHANG Zhao. CORROSION BEHAVIOR OF THE Ni-SiC NANOCOMPOSITE COATINGS[J]. 中国腐蚀与防护学报, 2011, 31(5): 371-376.
[13] PENG Chengzhang, ZHU Lingling. INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND CORROSION RESISTANCE OF Ni-P/NANO-Al2O3 COMPOSITE COATING[J]. 中国腐蚀与防护学报, 2011, 31(3): 179-183.
[14] WANG Jun LI Ning WANG Jia XU Likun. EFFECT OF ORGANIC TOP COATING ON ANTICORROSION PERFORMANCE OF SINTERED Zn-Al COATING[J]. 中国腐蚀与防护学报, 2009, 29(6): 475-480.
[15] HAO Long CHENG Qing HUANG Wenquan ZHU Houfei LIN An GAN Fuxing. CORROSION BEHAVIOR OF Ni-P COATING ON STAINLESS STEEL IN H2SO4 SOLUTION[J]. 中国腐蚀与防护学报, 2009, 29(1): 55-58.
No Suggested Reading articles found!