Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 110-116    DOI: 10.11902/1005.4537.2016.090
Orginal Article Current Issue | Archive | Adv Search |
Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06
Shuangqing SUN1,Qifei ZHENG2,Chunling LI1(),Xiumin WANG1,Songqing HU1
1 College of Science, China University of Petroleum (East China), Qingdao 266580, China
2 National Engineering and Technology Research Center for Nonferrous Metals Composites, Beijing General Research Institute for Nonferrous Metals, Beijing 100088, China
Download:  HTML  PDF(5883KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion products of pure aluminum alloy 8A06 exposed for 20 a in coastal- and industrial-atmosphere respectively was investigated by electron probe microanalysis (EPMA), wavelength-dispersive X-ray spectroscopy (WDS) and electrochemical impedance spectroscopy (EIS). Results show that the corrosion rate of the specimen exposed in industrial atmosphere is approximately 1.5 times higher than that exposed in coastal atmosphere, though the corrosion products in both atmospheres all mainly contained elements O, Al and S. In 0.6 mol/L Na2SO4 solution, Rp could be arranged in a decreasing order as follows: withdrawn specimens exposed for 20 a in coastal atmosphere>withdrawn specimens exposed for 20 a in industrial atmosphere>bare substrate of pure aluminum 8A06. This indicates that the protectiveness of corrosion products on the specimens exposed in coastal environment is better than that exposed in industrial environment.

Key words:  aluminum      atmospheric corrosion      corrosion products      EPMA      WDS      EIS     
Received:  05 July 2016     
Fund: Supported by National Natural Science Foundation of China (51201183 and 51501226), Fundamental Research Funds for the Central Universities (14CX02221A and 17CX05023) and Applied Fundamental Research Foundation of Qingdao Independent Innovation Plan (16-5-1-90-jch and 15-9-1-46-jch)

Cite this article: 

Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 110-116.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.090     OR     https://www.jcscp.org/EN/Y2017/V37/I2/110

Test site Atmospheretype Geographic coordinate Average
temperature / ℃
Average
RH / %
Rain pH Deposition / mgm-2d-1
East longitude North latitude Cl- SO2
Wanning Coastal 110o30′ 18o58′ 24.4 86 5.0 46.75 4.24
Jiangjin Industrial 106o15′ 29o19′ 18.2 81 4.4 0.76 77.45
Table 1  Climatic parameters and atmospheric pollutants data at Wanning and Jiangjin test sites during the periodfrom 1990 to 2001
Fig.1  Corrosion rates of pure aluminium 8A06 as a function of exposure time at Wanning site (coastal atmosphere) and Jiangjin site (industrial atmosphere)
Fig.2  Macrographs (a, b) and micrographs (c~f) of Al 8A06 exposed for 20 a at Wanning site
Position O Al S Si Cl Ca Fe
Front face Spot 1 49.90 41.64 5.89 1.18 0.86 0.14 0.39
Spot 2 49.93 40.83 5.61 2.15 0.69 0.14 0.66
Average 49.92 41.24 5.75 1.67 0.78 0.14 0.53
Back face Spot 3 55.65 40.93 1.90 --- 1.52 --- ---
Spot 4 55.21 42.08 1.65 --- 1.06 --- ---
Average 55.43 41.51 1.78 --- 1.29 -! ---
Table 2  WDS spot analysis results of element compositions of corrosion products formed on both front and backfaces of Al 8A06 after exposure for 20 a at Jiangjin site (mass fraction / %)
Fig.3  Macrographs (a, b) and micrographs (c, d, e, f) of Al 8A06 exposed for 20 a at Jiangjin site
Fig.4  Enlarged views of the marked areas in shown in Fig.3f (a) and the magrified images of areas I (b) and II (c) in Fig.4a
Location O Al S Si P C K Ca Fe
Front Face Outside of pit Spot 1 50.91 33.85 6.42 5.77 0.57 --- 0.28 0.23 1.97
Spot 2 54.30 27.56 6.91 7.33 0.35 --- 0.40 0.65 2.50
Average 52.61 30.71 6.67 6.55 0.46 --- 0.34 0.44 2.24
Inside ofpit Spot 3 23.31 55.97 0.90 10.16 0.35 --- 0.89 0.21 8.19
Spot 4 18.22 53.83 0.71 6.28 0.33 17.98 0.33 0.27 2.06
Average 20.77 54.90 0.81 8.22 0.34 8.99 0.61 0.24 5.13
Back Face Outerlayer Spot 5 47.68 41.79 3.72 4.85 --- --- 0.19 0.17 1.61
Spot 6 48.70 41.90 4.53 3.43 --- --- 0.19 0.29 0.95
Average 48.19 41.85 4.13 4.14 --- --- 0.19 0.23 1.28
Inner layer Spot 7 27.86 61.79 1.59 5.47 --- --- 0.21 0.95 2.15
Spot 8 23.62 63.98 1.68 --- 0.30 10.42 --- --- ---
Average 25.74 62.89 1.64 2.74 0.15 5.21 0.11 0.48 1.08
Table 3  WDS analysis results of elemental compositions of corrosion products formed on both front and back facesof Al 8A06 exposed at Jiangjin test site for 20 a (mass fraction / %)
Fig.5  Bode plots of the front (a, c) and back (b, d) faces of Al 8A06 samples exposed for 20 a at Wanning site (a, b) and Jiangjin site (c, d) after immersion in 0.6 mol/L Na2SO4 solution (pH=5) for different time
Fig.6  Rp values of the front and back faces of Al 8A06 exposed for 20 a at Wanning and Jiangjin test sites after immersion in 0.6 mol/L Na2SO4 solution (pH=5) for different time
[1] Melchers R E.Bi-modal trend in the long-term corrosion of aluminium alloys[J]. Corros. Sci., 2014, 82: 239
[2] Morcillo M, Chico B, de la Fuente D, et al. Looking back on contributions in the field of atmospheric corrosion offered by the MICAT Ibero-American testing network[J]. Int. J. Corros., 2012, 2012: 824365
[3] de la Fuente D, Otero-Huerta E, Morcillo M. Studies of long-term weathering of aluminium in the atmosphere[J]. Corros. Sci., 2007, 49: 3134
[4] Davis J R.Corrosion of Aluminum and Aluminum Alloys[M]. Ohio: ASM International, 1999: 25
[5] Graedel T E.Corrosion mechanisms for aluminum exposed to the atmosphere[J]. J. Electrochem. Soc., 1989, 136: 204C
[6] González J A, Morcillo M, Escudero E, et al.Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results[J]. Surf. Coat. Technol., 2002, 153: 225
[7] López V, González J, Otero E, et al.Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses[J]. Surf. Coat. Technol., 2002, 153: 235
[8] Vilche J R, Varela F E, Acu?a G, et al.A survey of Argentinean atmospheric corrosion: I-aluminium and zinc samples[J]. Corros. Sci., 1995, 37: 941
[9] Liu Y J, Wang Z Y, Ke W.Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al[J]. Corros. Sci., 2014, 80: 169
[10] Chung S C, Sung S L, Hsien C C, et al.Application of EIS to the initial stages of atmospheric zinc corrosion[J]. J. Appl. Electrochem., 2000, 30: 607
[11] Yadav A P, Nishikata A, Tsuru T.Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions—influence of time of wetness[J]. Corros. Sci., 2004, 46: 169
[12] Chen Y Y, Chung S C, Shih H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[13] Vargel C, Jacques M, Schmidt M P.Corrosion of Aluminium[M]. Oxford: Elsevier Ltd., 2004: 241
[14] Natishan P M, O’Grady W E. Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review[J]. J. Electrochem. Soc., 2014, 161: C421
[15] Blücher D B, Svensson J E, Johansson L G.The NaCl-induced atmospheric corrosion of aluminum: the influence of carbon dioxide and temperature[J]. J. Electrochem. Soc., 2003, 150: B93
[16] Blücher D B, Svensson J E, Johansson L G.Influence of ppb levels of SO2 on the atmospheric corrosion of aluminum in the presence of NaCl[J]. J. Electrochem. Soc., 2005, 152: B397
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[6] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[7] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[8] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[9] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[10] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[11] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[12] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
No Suggested Reading articles found!